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CHAPTER 1 INTRODUCTION 

 Improvement of energy efficiency and development of low-carbon technologies are two 

key solution approaches to ensuring future energy security and improving environmental 

cleanness, according to the International Energy Agency (IEA, 2017).  In 2016, the primary energy 

consumption in the U.S. was 97.583 Quadrillion Btu (QBtu), out of which 22 % were consumed 

by industries; the energy generated in that year, however, was about 83.412 QBtu.  This difference 

was the amount of net import.  For instance, the average petroleum import in 2016 reached 10.06 

million barrels per day (U.S. EIA, 2018).  The continuous fluctuation of crude oil price also affects 

the nation’s energy security.  It is known that the average crude oil price of the OECD countries 

was increased from $8.74 per MBtu in 2005 to $18.25 per MBtu in 2012 and then decreased to 

$7.04 per MBtu in 2016 (BP, 2018).  From the environmental sustainability point of view, the U.S. 

industries are responsible for about one-third of the overall GHG emission (U.S. EIA, 2018).   

 In the U.S., the chemical process industry accounts for about 40% of the total primary 

energy consumption among all the manufacturing sectors (Energetics Inc., 2014).  Needless to say, 

how to further improve energy conservation in chemical plants is of significant importance.   

1.1 Main Goals and Scientific Contributions 

 Process sustainability has become a main concern in industries, for which energy efficiency 

is a key indicator.  Over the past decades, the chemical process industry has shown a great success 

in energy recovery in process systems through applying heat integration technologies.  In chemical 

plants, thermal and mechanical energy are two common forms of energy.  While the former can 

be effectively recovered by heat exchanger networks (HEN’s), the recovery of the latter, however, 

has not drawn sufficient attention.  Note that process work is more expensive than process heat, 

but recovery of mechanical energy is much more challenging.   
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 From the thermodynamics point of view, heat flow where temperature is the state variable 

can be systematically managed to improve thermal energy efficiency, while work flow where 

pressure is the state variable must be carefully characterized so that opportunities for recovering 

mechanical energy can be identified.  It is known that a large number of chemical plants have 

process streams to be pressurized, which require work for compression, or depressurized, which 

can produce work through expansion.  Naturally, work exchange among process streams through 

synthesizing work exchanger networks (WENs) should be a feasible approach for mechanical 

energy recovery.   

 Due to the lack of fundamental understanding, the known methods for WEN system 

analysis and design are only very basic, where a few critical assumptions were inappropriately 

made in order to make the design problems solvable.  Thus, significant research efforts are needed.  

The ultimate research goal is to introduce a type of process integration for effective work 

integration.  To achieve this goal, a comprehensive thermodynamic analysis of work exchange in 

the unit operation as well as work integration at a system level is required.  This will help us to 

have better insight towards the development of a work exchange network synthesis.  Also, a 

methodological approach for energy target setting, process flowsheet, and combined heat and work 

integrated system is studied.  This requires an investigation of the available devices for mechanical 

energy recovery, economic analysis of the devices, and a comprehensive discussion on energy 

recovery using the device of interest to identify required modifications of units to be used 

commercially in chemical plants.   

 The successful accomplishment of these objectives leads us to introduce a novel, rigorous, 

and general thermodynamic modeling and analysis approach for target setting of mechanical 

energy recovery prior to WEN synthesis.  A process synthesis methodology for designing a heat-
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integrated work exchange network is proposed, where both mechanical and thermal energy 

efficiencies as well as economic feasibility are considered.  For investigating an energy recovery 

device that can be operated for mechanical energy recovery involving gas streams, a CFD-based 

model has been developed and various simulations to study the design of such a device, and its 

operational behavior under different operating conditions are conducted.  In addition, to show the 

requirement of energy efficiency improvement in manufacturing sectors, a general data-driven 

method has been developed for analysis of energy efficiency of manufacturing sectors in different 

geographical zones.  Industries consume about one-third of the total energy in the U.S.  In 

manufacturing sectors around the country, significant energy loss occurs in various types of 

process systems and energy generation, conversion, and distribution steps.  There exists a variety 

of information about national-level manufacturing and energy use.  Integrated use of the accessible 

data could generate valuable information about energy efficiency and environmental impact in 

different manufacturing regions in the U.S.   

1.2 Organization of Dissertation 

 Since the energy efficiency improvement in chemical processes covers a broad spectrum, 

the dissertation body is composed of two sections.  The first section focuses on the new type of 

process integration called work exchange network design using a mechanical energy recovery 

device known as a direct work exchanger.  For a bigger picture of the possible energy efficiency 

improvement in manufacturing sectors including the chemical and petrochemical sectors, a data-

driven study is conducted to analyze the manufacturing sectors’ performance in terms of energy 

efficiency and environmental impact in different geographical scales.  This investigation will be 

helpful towards a possible collaboration with industries in the region for thermal and mechanical 

energy efficiency improvement in process systems  
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 In Chapter 2, the concept of work integration and its fundamentals are discussed.  This will 

be followed by a general review of the frontier research on work exchanger network (WEN) 

synthesis, which is a system approach to implementing work integration.  Challenges in WEN 

synthesis, such as energy targeting, equipment innovation and costing, and system configuration 

when heat integration is incorporated, are discussed.  Future research opportunities in WEN design 

and deployment are also considered.  In Chapter 3, a thermodynamic modeling and analysis 

method to identify accurately the maximum amount of recoverable mechanical energy of any 

process system of interest, is introduced.  It is greatly beneficial if the maximum amount of 

mechanical energy recoverable by a WEN can be determined prior to network design. 

 In Chapter 4, the focus will be on the next step towards completion of WEN synthesis, 

which is introducing a thermodynamic model-based synthesis approach to develop a cost effective 

heat-integrated work exchanger network (HIWEN), in which direct work exchangers may work 

under different operating conditions.  Case studies will demonstrate that the resulting HIWENs 

can recover the maximum amount of mechanical and thermal energy at the lowest cost. 

 In Chapter 5, the investigation of the feasibility and design of a piston-type work exchanger 

(WE) that works for processing gas-phase process streams, is presented.  The main approach is to 

use Aspen Plus and Computational Fluid Dynamic (CFD) simulation techniques to construct a WE 

model.  In simulation, different unit configurations are compared, and different operational 

characteristics, cycle time, and dynamic behavior of the work exchanger, which are critical in the 

improvement of energy recovery efficiency are studied.  

 In Chapter 6 that includes the second part of the dissertation, a general data-driven 

modeling and analysis method to study energy consumption, energy loss, and CO2 emissions in 

the manufacturing sectors at the state or county level, is introduced.  The state of Michigan is 
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selected to illustrate methodological applicability.  Finally, concluding remarks and future 

directions are sketched in Chapter 7.   
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CHAPTER 2 MECHANICAL ENERGY RECOVERY THROUGH WORK 

EXCHANGER NETWORK INTEGRATION: CHALLENGES AND OPPORTUNITIES 

 The chemical and petrochemical sector consumes almost 40% of the total primary energy 

use of all the manufacturing industries, but the energy loss is about 52% and the combustion 

emission reaches 46% of the total emission in manufacturing sectors (Annual Energy Outlook, 

2015, Energetics Inc., 2014).  Therefore, a significant improvement of energy efficiency in 

chemical and petrochemical plants is of great importance.  Over the past three decades, heat 

integration technologies have been widely and successfully used to recover thermal energy, mainly 

through the integration of cost-effective heat exchanger networks (HENs) in process systems 

(Linnhoff and Flower, 1978, Floudas et al., 1986, Yee and Grossmann, 1990, Shenoy, 1995).   

 In chemical and petrochemical plants, mechanical energy is another form of energy.  It is 

known that about 30% of mechanical energy is lost in production (Energetics Inc., 2014), but how 

to recover mechanical energy effectively has not been fully explored.  From the thermodynamics 

point of view, heat flow where temperature is the state variable is directly related to thermal energy 

efficiency, while work flow that occurs when a pressure difference exists between process streams 

should be characterized to evaluate mechanical energy efficiency.  In plants, pressurization of 

process streams requires work for compression, while stream depressurization produces work 

through expansion.  Ammonia manufacturing is among well-known examples.  In production, 

natural gas is pressurized before entering a primary reformer, and air is pressurized before entering 

a secondary reformer.  Ammonia synthesis occurs at a very high pressure, and thus a syngas 

mixture entering the reactor needs to be pressurized first.  After the product stream containing 

mostly ammonia leaves the reactor, it should be depressurized (Strelzoff, 1978).  Another example 

is offshore LNG production in the gas processing industry, where high-pressure natural gas 

streams need to be cooled by liquid CO2 and then expanded to lower pressures to exchange heat 
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with liquid N2.  It should be further depressurized in a turbine to reach its storage pressure 

(Simonds and Williams, 1968, Aspelund, 2006, Aspelund et al., 2007, Razib et al., 2012).  

Apparently, if the available mechanical energy in the high-pressure streams is sufficiently utilized 

to pressurize the lower pressure streams through work exchange, the energy cost in operation could 

be considerably reduced; this energy efficiency improvement should also contribute to the 

reduction of CO2 emission.   

2.1 Mechanical Energy Recovery Fundamentals 

 It is recognized that the utilization of the mechanical energy available in a set of high-

pressure streams for pressurizing a set of lower pressure streams in a process system may greatly 

reduce energy cost for compression operation.  The pressure driven mechanical energy can be 

recovered using two types of work transfer units (WTUs), the direct or indirect recovery devices.  

The former is called work exchanger (WE), which was first introduced for seawater reverse 

osmosis desalination systems (to replace energy-intensive pumps and turbines) by Cheng et al. 

(1967).  The device was built using two displacement vessels configured in parallel that could 

simultaneously pressurize one fluid stream in one vessel and depressurize an equivalent volume 

of another stream in the other vessel in each operational cycle.  Figure 2.1(a) is a sketch of one 

vessel, where the stream flows are controlled by four valves (Cheng et al., 1967, Cheng and Cheng, 

1970).  As a comparison, an indirect WTU, namely single-shaft-turbine-compressor (SSTC), is 

sketched in Fig. 2.1(b).  This type of unit exchanges work in two steps: the pressure energy of a 

high-pressure stream is first converted to mechanical energy using an expander (turbine), and then 

to a compressor to pressurize a low-pressure stream (Chen and Wang, 2012).  This type of device, 

however, has a low operational efficiency.  
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Figure 2.1.  Sketch of work transfer units: (a) a (flow) WE and (b) an SSTC. 

 The work exchanger designed by Cheng et al. (1967) is sketched in Fig. 2.1(a).  The process 

unit has two compartments divided by a piston; the movement of the piston is determined by the 

pressure difference between the two sides of it.  In the sketch, the high-pressure stream in the right 

compartment can be depressurized from its input pressure in
H

P  to output pressure out
H

P , and the 

low-pressure stream in the left compartment can be pressurized from its input pressure in
L

P  to 

output pressure out
L

P .  According to Cheng et al. (1967) the work exchange operation, through 

controlling the opening of the four valves shown in Fig. 2.2, occurs in the following four 

consecutive steps:  

 I) Depressurization step.  After the displacement vessel is filled with high-pressure stream 

at 
in

HP , valve v3 is closed and valve v4 is opened.  This makes the high-pressure stream in the right 

compartment of the vessel flows out and the content in it is depressurized.  This step takes a very 

short time.  Valves v1 and v2 are closed in this step. 

 II) Low-pressure displacement step.  When the pressure in the right compartment of the 

vessel drops to a pressure below 
in

LP , valve v1 opens.  This makes the low-pressure stream flows 

into the left compartment of the vessel, and the depressurized high-pressure stream in the right 

(a) (b)

Com-

pressor Turbine
Drive shaft

in
H

P

out
H

P

in
L

P

out
L

P

in
L

P in
H

P

out
H

P

out

LP
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compartment continues to flow out through valve v4.  The piston moves to the right-hand end. 

Valves v2 and v3 are closed.  At the end of the step, the vessel is filled with the low-pressure feed. 

 III) Pressurization step.  After the displacement vessel is filled with the low-pressure stream 

at 
in

LP , valve v4 is closed, valve v3 is opened, and some high-pressure stream flows into the right 

compartment of the vessel at 
in

HP  to pressurize the content in the left compartment.  Similar to 

step (I), this step takes a very short time.  Valves v1 and v2 are closed in this step. 

 IV) High-pressure displacement step.  When the pressure in the left compartment of the 

vessel exceeds 
out

LP , valve v2 opens, and the pressurized low-pressure stream flows out through 

valve v2.  The high-pressure stream flows in continuously through valve v3.  The piston moves 

from the right-hand end to the left-hand end.  Valves v1 and v4 are closed.  At the end of this step, 

the vessel is filled with high-pressure stream at 
in

HP .   

 
Figure 2.2.  Valve position in each operational step of a work exchanger: (I) depressurization 

step; (II) low-pressure displacement step; (III) pressurization step; (IV) high-pressure 

displacement step. 
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The above steps repeat in operation.  Note that steps (II) and (IV) take most of the time in 

each operational cycle, as compared with steps (I) and (III).  Thus, it has been suggested to use 

two displacement vessels for the unit to be operated with appropriate timing, where fluid flows 

through the system continuously except for the short periods during steps (I) and (III).  Also based 

on the four consecutive steps, the inlet pressure of the low-pressure stream should be higher than 

the outlet pressure of the high-pressure stream, and the inlet pressure of the high-pressure stream 

should be higher than the outlet pressure of the low-pressure stream for a continuous operation.  

The reversible shaft work (W) of each stream is expressed below (Kyle, 2003), in mathematical 

manipulation, the theorem of integration by parts is applied. 

  

out
H

in
H

out
H

out
H

in
H

in
H

out
H

in
H

V

V

V,P

V,P

P

P
H PdVPVVdPW , (2.1) 

  

out
L

in
L

out
L

out
L

in
L

in
L

out
L

in
L

V

V

V,P

V,P

P

P
L PdVPVVdPW , (2.2) 

where V is the volumetric flow rate of a stream.  In each of the above two equations, the first term 

on the right is the difference of the flow work between the high and low pressures, and the second 

term is the shaft work for the non-flow process.   

 Note that if the process streams are in gas phase, the operation can be under different 

conditions, such as isothermal, isentropic, or polytropic.  Using an equation of state (PV=znRT) 

and thermodynamic laws, we can derive formulas for calculating the mechanical energy that 

should be removed from a given high-pressure stream or be received by a given low-pressure 

stream to meet their depressurization or pressurization needs, respectively.  These formulas are 

summarized in Table 2.1.  Note that in the table, there are two parameters, k [i.e., 
H

k  in (T2.1-3) 

and 
L

k  in (T2.1-4)] and m [i.e., 
H

m  in (T2.1-5) and 
L

m  in (T2.1-6)].  Parameter k is the ratio of 
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the heat capacities at the constant pressure and volume (i.e., 
vp

c/ck  ), and parameter m is 

related to parameter k (i.e.,   
pp

kkm   11  ), where 
p

  is the polytropic efficiency.  If 
p

  

reaches 100% (i.e., no friction), then parameters k and m are equal.  For more detailed information 

about formula derivation, see Walas (1990), and Liu et al. (2014).  Deng et al. (2010) studied the 

operation under the polytropic condition, and reported that the work recovery efficiency of a gas-

gas work exchanger is lower than that of a liquid-liquid work exchanger.  They indicated that the 

operational efficiency is decreased if the compression ratio is large; in that case, a multi-stage work 

transfer unit should be considered.   

Table 2.1.  Evaluation of mechanical energy exchanged by process streams under different 

operating conditions 

Operating 

condition 
WH WL 

Isothermal 






















out

H

in

H

w

HH

H
P

P
ln

M

V
zRT

iH

ii
ρ

 

                                                   (T2.1-1) 




























in

L

out

L

w

LL

L
P

P
ln

M

ρV
zRT

jL

jj  

                                                 (T2.1-2) 

Isentropic  

(adiabatic, 

frictionless) 











































1
ρ

1

1

H

H

iH

ii

k

k

out

H

in

H

w

HHout

H

H

H

P

P

M

V
zRT

k

k  

                                                   (T2.1-3) 



















































1
1

1

L

L

jL

jj
k

k

in

L

out

L

w

LLin

L

L

L

P

P

M

ρV
zRT

k

k
 

                                                 (T2.1-4) 

Polytropic 

(adiabatic, 

frictional) 











































1
ρ

1

1

H

H

iH

ii

m

m

out

H

in

H

w

HHout

H

H

H

P

P

M

V
zRT

m

m  

                                                   (T2.1-5) 
















































1
1

1

L

L

jL

jj
m

m

in

L

out

L

w

LLin

L

L

L

P

P

M

ρV
zRT

m

m
 

                                                 (T2.1-6) 

 The work exchange between high-pressure and low-pressure streams during the four steps 

is also illustrated in a pressure-volume (P-V) diagram as shown in Figure 2.3 (Cheng et al., 1967). 

In this figure, lines 2-3, 7-8-9 represent depressurization step, lines 3-4 and 9-10, low-pressure 

displacement, lines 4-1 and 10-6-6′, pressurization step; and lines 1-2 and 6-7, high-pressure 

displacement.   
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Figure 2.3.  P-V diagram for a flow work exchanger. 

 Huang and Fan (1996), added one dimension to P-V (i.e., Pressure-Volumetric flowrate) 

diagram to visualize the energy exchanges among streams.  The result is a three-dimensional 

diagram called P-V-W (i.e., Pressure-Volumetric flowrate-Work) diagram as shown in Figure 2.4. 
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Figure 2.4.  P-V-W diagram for work exchanger. 

 P-W (i.e., Pressure-Work) diagram is generated from the P-V-W diagram and as shown in 

Fig. 2.5 contains two operating lines to describe work exchange between a high-pressure stream 

and a low-pressure stream, assuming no energy loss in operation.  This diagram demonstrates a 

distinctive feature, i.e., the two operating lines cross each other.  This is due to the following 

necessary condition for feasbile work exchange: 
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Figure 2.5.  P-W diagram for the work exchanger. 

 (i) Work energy should not be exchanged between any pair of low-pressure streams or 

pair of high-pressure streams. 

 

in out

H H

in out

L L

P >P for HPstream

P <P for LPstream





 (2.3) 

 (ii) Also note that in Fig. 2.5, the slope of the operating line for the high-pressure stream 

must be greater than that for the low-pressure stream.  Since the slope is the reciprocal of the 

volumetric flow rate of a process stream, the following inequality holds:   

 
LH

VV  . (2.4) 

 (iii) The source pressure of high-pressure stream should be higher than the target pressure 

of the low-pressure stream at least in the amount of the minimum pressure difference (∆Pmin); the 

P

W

High-pressure 

stream

Low-pressure 

stream

in

HP
out

LP

in

LP
out

HP

min
P

min
P
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source pressure of the low-pressure stream should be higher at least in the amount of ∆Pmin than 

the target pressure of the high-pressure stream.  

 
min

min

Δ

Δ

in out

H L

in out

L H

P P P

P P P

  


  
 (2.5) 

 Determination of ∆Pmin affects the efficiency of the work exchangers. Cheng et al. (1967) 

reported that the optimized value is between 35 to 70 kPa.  The process streams through a work 

exchanger can be in either liquid or gas phase.  For the streams in the gas phase, the work exchanger 

may be operated under isothermal, isentropic, or polytropic condition. 

2.2 WEN Synthesis-Progress Overview 

 Inspired by the notion of heat integration through HEN synthesis, Huang and Fan in 1996 

introduced the notion of work integration, and defined a new type of process synthesis called work 

exchanger network (WEN) synthesis (Huang and Fan, 1996).  In a WEN, mechanical energy is 

transferred between process streams using flow work exchangers that were constructed by Cheng 

et al. (1967), which are now widely used in the desalination industry (Flowserve, 2017, Pique, 

2003).  In this work, this type of unit is called direct work exchanger, or simply work exchanger.  

The P-W diagram introduced by Huang and Fan (1996) was used to characterize work exchange 

of any pair of high-pressure stream and low-pressure stream.  It was then employed to investigate 

various stream matching conditions and basic rules for synthesizing a thermodynamically feasible 

and cost effective WEN.   

 The WEN synthesis problem did not catch sufficient attention until recent years.  Deng et 

al. (2010) conducted a basic thermodynamic analysis on a gas-gas work exchanger.  Chen and 

Feng (2012) used the P-W diagram technique to study a WEN problem with an ammonia synthesis 

example.  Liu et al. (2014) developed a graphical method using an improved P-W diagram.  By 
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their method, a thermodynamically feasible WEN was developed, where work exchangers, 

compressors and expanders were used.  Their methodology, however, is incapable of predicting 

the maximum amount of recoverable mechanical energy prior to synthesis, and thus the efficiency 

of energy recovery by a resulting WEN is low.  Besides, their work did not consider the capital 

cost issue, even in terms of the number of work transfer units used in network design as an 

approximation. 

 Zhuang et al. (2017) have presented a transshipment model for adiabatic processes and 

formulated an NLP model.  The work exchange network is designed to calculate the minimum 

utility consumption for the condition that all streams satisfy the constraints of pressures and 

temperatures.  Then, heat integration is introduced by adding heaters and coolers for the step-wise 

design of both work and heat integration to minimize TAC.  The direct work exchanger is used as 

the energy recovery device.  Note that in the economic analysis of the direct work exchangers, 

one-fifth of the total cost of one compressor and one expander (turbine) is considered.  In another 

study, Zhuang et al. (2017) have worked on the transshipment model for an isothermal process for 

minimizing the utility consumption.  They developed the work exchange network using a set of 

matching rules.  In a recent study by Zhuang et al. (2017), an upgraded graphical method is 

presented to conduct a work exchange network synthesis using direct work exchangers.  They have 

work on the similar type of composite curves for high-pressure and low-pressure matching studied 

by Liu et al. (2014).  However, they have introduced a pressure index (μ) to modify the P-W 

composite curves for linear μ-W plots.   

 Using single-shaft-turbine-compressor (SSTC) units, which can be called indirect work 

exchangers, Razib et al. (2012) proposed a WEN design method, and a process configuration was 

identified by a superstructure-based MINLP algorithm in their case study.  Huang and Karimi 
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(2016) presented an MINLP formulation to synthesize work-heat exchange network at the lowest 

total annualized cost.  In each stage of the presented superstructure, streams will pass through a 

heat exchanger network first and then work exchanger network and will go through additional 

heaters or coolers to reach the target temperatures.  Considering the fact that energy provided 

through expansion increases with inlet temperature and required through compression decreases 

by inlet temperature, they have assumed high-pressure streams as cold streams and low-pressure 

streams as hot streams in heat exchanger network.  Recently, Nair et al. (2018) have studied a new 

MINLP model for total annualized cost minimization work-heat exchange network synthesis 

without pre-assuming the hot or cold streams for high-pressure and low-pressure streams.  Then, 

the streams will go through stages of a heat exchanger network first and then a work exchanger 

and additional heat exchanger network to reach the target temperatures.  In this work, they have 

also considered stream property correlations and the phase change possible.   

 Onishi et al. (2014) introduced a new MINLP optimization model for the synthesis of a 

WEN using SSTC units, with hypothetical heat integration for optimal pressure recovery from 

process gas streams.  Onishi et al. (2017) also worked on multi-objective modeling (moMINLP) 

for the synthesis of work and heat exchange network to simultaneously minimize total annualized 

cost and overall environmental impact.  In both studies, streams will go through a heat exchanger 

network first and then a work exchanger network.  Similar to Huang and Karimi (2016), high-

pressure streams are considered as cold streams and low-pressure streams as hot streams but to 

reach the target temperature after the final stage of work exchanger network, high-pressure streams 

will be heated and low-pressure streams will be cooled.   

 Cui et al. (2017) developed a process superstructure for a 4-column methanol distillation 

system to improve energy efficiency through heat and work exchanger networks to reduce steam 
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and electricity consumption.  In WEN design, they have considered using the shaft work of 

expanders as power for running the pumps. 

 Despite the studies on the application of direct or indirect work exchangers, as an early 

investigation heat and work integration was studied through the placement of heat engines and 

heat pumps (Townsend and Linnhoff, 1983).  Fu and Gundersen (2015, 2016) also investigated 

the relevance of heat and work integration.  In their study, a graphical design procedure was 

presented for integrating compressors and expanders into HEN.  The placement of each 

pressurization/depressurization unit and its influence on the pinch point temperature and exergy 

consumption were also analyzed.   

2.3 Challenges and Opportunities 

 The known studies have shown that WEN synthesis is a new type of process integration 

technology, and WEN can be integrated into process systems to recover mechanical energy that is 

consumed by compressors, pumps, turbines, and other types of pressure vessels in the process 

industries.  

 There are various similarities between HEN and WEN syntheses, as fundamentally in each 

type of network, a set of high-potential streams (hot streams in HEN or high-pressure streams in 

WEN) transfer energy to a set of low-potential streams (cold or low-pressure streams) due to the 

existence of a driving force (∆T in HEN and ∆P in WEN).  In HEN, heat transfer units are easy to 

operate.  By contrast, the compressors and expanders in WEN may operate in multiple stages, 

which could be under isothermal or non-isothermal condition.  Thus, the shaft work either 

demanded for compression or provided by a work force may be significantly different.  In addition, 

required compression and provided expansion energy is operating temperature dependent.  
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 Methodologically, the Pinch Analysis technique successfully used in HEN synthesis 

cannot be directly used for WEN synthesis, because the basic notion of pinch point for heat 

exchange is not applicable for work exchange.  As shown in the T-H diagram in Fig. 2.6(a), the 

temperature of the hot stream must be higher than that of the cold stream in the entire temperature 

range involved.  However, this is not the case for work exchange between a high-pressure stream 

and a low-pressure stream as shown in the P-W diagram in Fig. 2.6(b).  Therefore, the method for 

determining the maximum energy recovery by a HEN cannot be applied to a WEN problem.  

Besides, the basic formula for estimating the minimum number of heat transfer units in a HEN 

cannot be simply applied to the estimation of the minimum number of work transfer units in a 

WEN.  

Figure 2.6.  Comparison of (a) heat transfer in a HE and (b) work transfer in a WE. 

 It is noticed that WE, either direct or indirect, has only limited industrial applications.  

There is a serious lack of technological innovation in equipment design, especially for gas-gas or 

gas-liquid direct WE.  This requires a more fundamental study on the designed operational 

behaviour of such a type of device.  Also note that if a WE involves a gas stream’s pressurization 

T

H

Hot 

stream

Cold 

stream

in

HT
out

CT

in

CT

out

HT

minTΔ

minTΔ

QE

P

W

High-pressure 

stream

Low-

pressure 

stream

in

HP
out

LP

in

LP

out

HP

minPΔ

WE
(a) (b)

minPΔ



www.manaraa.com

20 

 

or depressurization, the stream temperature can be changed considerably in operation.  Therefore, 

such a WEN should be designed with heat integration technology incorporated; thereby leading to 

a hybrid exchange network.  

 WEN synthesis problems could be mathematically formulated and solved by MINLP 

techniques.  Other types of synthesis methods could be also attractive, especially if a WEN design 

problem involves not too many high/low pressure streams, which is common.  In such a case, 

heuristic based methods may demonstrate advantages, as a derived solution structure becomes 

explainable, which allows engineers to address some practical design issues that could be difficult 

to formulate mathematically.  Note that since heat-incorporated WEN system is structurally highly 

interacted, its operation could be sophisticated in terms of system dynamics, control, and process 

safety. 

 The essential purpose of WEN synthesis is to improve process sustainability.  This is the 

reason in addition to energy; economic conservation plays a key role in development of any new 

technology.  However, cost estimation of the direct work exchangers has not been studied for 

different capacities and sizes similar to other unit operations such as compressors and heat 

exchangers.  The limited application of these devices in desalination processes could be defined 

as the main reason.  A pilot study of flow work exchangers for desalination processes by Cheng 

and Fan (1968) is the only available source which discussed the cost of the unit for a specific 

capacity.  Thus, to investigate the economic feasibility of using direct work exchangers in chemical 

processes, the development of a unique formula for cost estimation of the unit would be of great 

importance.   

 Among different types of WEs, the Dual Work Exchange Energy Recovery Device 

(DWEER) has been widely used for seawater reverse osmosis (RO) desalination, which is one of 
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the most efficient energy recovery systems developed to date (by Flowserve Corporation).  This 

type of device (dealing with liquid streams) has been reported to have low mixing and leakage 

losses, low maintenance cost, and self-adjustment capability to different flow rates and pressures.  

Despite that, WEs dealing with gas phase streams will demonstrate different operational 

characteristics.  Note that operational safety related to leakage and mixing losses should be 

considered, especially when processing gas streams. 

 Another important concern is the operational performance of WEs, as the units may have 

a longer cycle time, depending on the operational mode, in comparison to compressors and 

expanders.  Therefore, WEN dynamic control could be a challenge, as an effective operational 

coordination strategy is needed for operating different types of units working in continuous or 

batch-like operational modes.  This requires a more comprehensive study on system control design. 
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CHAPTER 3 PREDICTION OF MAXIMUM RECOVERABLE MECHANICAL 

ENERGY VIA WORK INTEGRATION: A THERMODYNAMIC MODELING AND 

ANALYSIS APPROACH 

 The known studies have clearly shown that WEN, either using direct or indirect work 

exchangers, is a new type of process network system for recovering mechanical energy that is 

consumed or provided by compressors, pumps, turbines, and other types of pressure vessels.  

However, there is still no known method that can be used to predict the maximum amount of 

mechanical energy recoverable by work exchangers prior to process synthesis.  As the pinch 

concept is not valid in work exchange analysis, the traditional pinch analysis method is in general 

not applicable for WEN synthesis.  Thus, a new type of synthesis methodology should be 

developed.  As the first step, prediction of maximum recoverable mechanical energy prior to 

network synthesis should be of great significance, as this could help determine if a WEN is 

economically attractive for energy recovery, and if so, the predicted energy recovery can be set as 

a target to achieve in the process synthesis phase.   

 In this chapter, we focus on introducing a mathematical modeling and analysis method 

which aims at predicting the maximum amount of mechanical energy that can be feasibly 

recovered using work exchangers.  The modeling and analysis method can be applied to the design 

of a work exchange system operated under isothermal or adiabatic conditions.  To illustrate 

methodological efficacy, two case study problems selected from the literature are investigated and 

the results are compared with those by other methods.   

3.1 Mathematical Framework for Energy Recovery Targeting  

A WEN synthesis problem can be stated as follows.  Given a set of high-pressure streams 

(
i

H , i = 1, 2, ···, HN ) and a set of low-pressure streams (
j

L , j = 1, 2, ···, 
L

N ), their supply and 

target pressures (i.e., 
s

H i
P , 

t

H i
P , 

s

L j
P , and 

t

L j
P ), volumetric flowrates (i.e., 

iHV  and 
jLV ), and the 
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minimum acceptable pressure difference between any pair of high-pressure and low-pressure 

streams (i.e., minΔP ), synthesize a WEN that can recover the maximum amount of mechanical 

energy at the lowest cost. 

 To set an energy target for this type of synthesis problem, we introduce a thermodynamic 

modeling and analysis method that can be used to determine precisely the maximum amount of 

mechanical energy recoverable by a WEN prior to flowsheet development.  The modeling involves 

an introduction of a number of matrices and vectors, which is followed by a model-based 

computational procedure. 

Identification of pressure intervals of low-pressure streams for pressurization by 

high-pressure streams.  This task can be accomplished in two steps.  

Step 1.  Construct matrix Γ .  For each low-pressure stream Lj (j = 1, 2, ···, NL), it is 

required to identify the largest pressure interval, within which Lj can receive mechanical energy 

thermodynamically feasibly from each high-pressure stream Hi (i = 1, 2, ···, NH).  Thus, we 

introduce matrix Γ  to accommodate all NH×NL intervals in the following structure:  
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
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

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
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
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


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22212

12111

Γ , (3.1) 

where  

 







 b

L,H
a

L,HL,H
jijiji

, , (3.2) 
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where 
ji

L,H
  is the identified pressure interval between streams Hi and Lj; 

a
L,H

ji

 is the lower-

bound pressure; 
b

L,H
ji

  is the upper-bound pressure.  Figure 3.1 shows a flowchart that can be 

used to generate each pressure interval in the matrix, where the necessary condition for work 

transfer between a pair of H and L streams shown in Eq. 2.5 is implemented.   

Step 2.  Construct matrix P .  Note that within any specific pressure interval of a low-

pressure stream, it can accept energy from only one high-pressure stream.  However, in matrix Γ , 

some identified interval(s) of an L stream may be associated with more than one H stream.  If this 

occurs, then the overlapped pressure range between the identified interval(s) should be specified; 

only one such an interval can be kept, and the others should be excluded.  Therefore, we introduce 

another matrix named P  (NH×NL), which should be derived through manipulating element values 

in matrix Γ . 

 



























LNHNHNHN

LN

LN

L,HL,HL,H

L,HL,HL,H

L,HL,HL,H

PPP

PPP

PPP









21

22212

12111

P , (3.3) 

where  

  b

LH

a

LHLH jijiji
PPP ,,, , . (3.4) 
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Figure 3.1.  Flowchart for derivation of matrix Γ  . 
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 The element, 
ji

L,H
P  can be determined in two sub-steps.  The first sub-step is to calculate 

l
L,H

ji

P  using the following formula: 

 

   























otherwise          

 if                                                             

;R

VV;

P

jlijijiji

liiji

ji

L,HL,HL,HL,H

HHL,H

l
L,H





 (3.5) 

where l is an index whose value should satisfy two conditions: (1) 0 but  1  l Nl
H

, and (2) 

  .Nli
H

0   Note that the long bar above the intersection of 
ji

L,H
 and    

jliji
L,HL,H

R


  in 

the above equation is an operation of complement in set theory. 

 The second sub-step of the evaluation is to determine 
ji

L,H
P , which is the intersection of 

all identified s'P
l

L,H
ji

, i.e.,  

 









l

L,HL,H
jiji

PP  . (3.6) 

 Note that    jliji L,HL,HR
  in Eq. 3.5 is the overlapped pressure range between the 

  thji L,H  interval and the   th jli L,H  interval in the j-th column of matrix Γ ; it can be 

determined through performing the following operation: 

         b

L,H

b

L,H

a

L,H

a

L,HL,HL,H jlijijlijijliji
,R


 ΓΓΓΓ . (3.7) 

Evaluation of mechanical energy transfer from high-pressure streams to low-

pressure streams.  Using the pressure interval information in matrix P , we can calculate the 
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mechanical energy that can be transferred from each individual high-pressure stream to each 

individual low-pressure stream.  Matrix 


W  (
H

N ×
L

N ) is thus introduced to collect all energy 

transfer data in a structured way, i.e., 

 



























LNHNHNHN

LN

LN

L,HL,HL,H

L,HL,HL,H

L,HL,HL,H

WWW

WWW

WWW

















21

22212

12111

W  (3.8) 

where 

,

,

,

1

,

β

,

ρ
;                                  Isothermal condition

ρ
1 ;      Isentro

1

j j i j

j

i jL j

L

L

j j i j

H L ji j

i jL j

b

L L H Ls

L a

H Lw

k

b k
L L H LsL

L a

L H Lw

V P
zRT ln

M P

V Pk
W zRT

k M P



   
   

  
  

                      
1

,

,

pic condition (adiabatic)

ρ
1 ;     Polytropic condition (adiabatic)

1

L

L

j j i j

j

i jL j

m

b m
L L H LsL

L a

L H Lw

V Pm
zRT

m M P













                        

 (3.9) 

Note that in the isentropic and polytropic conditions, the outlet temperature of a low-pressure 

stream changes after each compression step.  Hence, in calculation of ,W
jL,iH

  the inlet 

temperature of low-pressure stream, ,T s
L

i
 should be multiplied by  

1

,

L

L

i j

j

k

a k
H L

s

L

P

P



 
 
 
 

 or 

1

,

L

L

i j

j

m

a m
H L

s

L

P

P



 
 
 
 

 for 

the isentropic or polytropic condition, respectively, in order to eliminate calculation error.  

In matrix 


W , the sum of the element values in any row (e.g., the i-th row) is the total 

amount of mechanical energy from the corresponding high-pressure stream (i.e., 
i

H ) to all 
L

N  
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low-pressure streams (i.e., 


L

jL,iH

N

j

W

1


).  This amount of energy required for pressurizing all the 

low-pressure streams can be greater than, equal to, or less than the total amount of energy that the 

high-pressure stream (
i

H  in this case) can transfer.  Understanding the value difference is 

important as this could affect design decision during flowsheet development.  Here, a vector named 


W  ( 1

H
N ) is defined to include this type of value information for each high-pressure stream.   

 

























HN

W

W

W







 
2

1

W , (3.10) 

where 

 



L

jL,iHii

N

j
H

WWW

1


. (3.11) 

According to Eqs. (T2.1-1), (T2.1-3), and (T2.1-5) in Table 2.1, the value of 
i

H
W  can be estimated 

as follows: 

 

1

;                                Isothermal  condition

ρ
1 ;     Isentropic  condition (adiabati

1

i i i

i

iHi

H

H

i i i

i i

iHi

s

H H H

H t

Hw

k

s k
H H HtH

H H t

H Hw

V ρ P
zRT ln

M P

V Pk
W zRT

k M P



   
   

     

                
1

c)

ρ
1 ;    Polytropic  condition  (adiabatic)

1

H

H

i i i

i

iHi

m

s m
H H HtH

H t

H Hw

V Pm
zRT

m M P













                  

 (3.12) 
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 Note that in the isentropic and polytropic conditions, the outlet temperature of high-

pressure stream, 
t
H

i

T , will change after each stage of expansion, which can be evaluated as 

follows: 

 

1

1

;      Isentropic condition (adiabatic)   

;      Polytropic condition (adiabatic)  

H

H

i

i

i

i

H

H

i

i

i

k

t k
Hs

H s

H

t

H

m

t m
Hs

H s

H

P
T

P

T

P
T

P






 
   
 


 

  
  

   

. (3.13) 

 Determination of the minimum amount of external energy requirement.  The element 

values in vector 


W  can be positive, zero, and negative.  The sum of all positive values in vector 


W  (i.e., 0

i

W


) is the total amount of mechanical energy of 
H

N  high-pressure streams that 

cannot be used for pressurizing feasibly low-pressure streams.  This amount of energy should be 

removed by expanders.  We use variable U
E

W  to quantify this total external power for expanders, 

i.e., 

 






H

i

n

i

U
E

WW

1


, (3.14) 

where 
i

W


 included in the above equation must be of a positive value, and 
H

n  is the total number 

of the elements with a positive value each in vector 


W . 

 On the other hand, if the i-th element in 


W  has a negative value, this means the energy 

transferred from high-pressure stream 
i

H  to 
L

N  low-pressure streams is insufficient.  The sum of 

all the negative values in the vector 


W  is part, but not all, of the total demand of the external 
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compression power needed for pressurizing the low-pressure streams.  This amount can be 

evaluated by variable 
U
C

W
1

 that is defined below: 

 





H

i

n

i

U

C WW
1

γ1
, (3.15) 

where 
i

W


 included in the above equation must be of a negative value, and 
H

n  is the total number 

of elements having a negative value each in vector 


W . 

 Note that matrix P  contains the pressure intervals of low-pressure streams for feasibly 

receiving mechanical energy from high-pressure streams.  In general, there must be other pressure 

intervals of low-pressure streams, within which no energy can be received from any high-pressure 

stream, based on the necessary condition for feasible work exchange shown in Eq. 2.5.  Thus, in 

order to meet the pressurization requirement for those intervals, additional external compression 

power will be needed.  Variable 
U
C

W
2

 is designated for this purpose; it can be calculated as follows: 

 
tot

LH
tot
L

U
C

WWW



2

, (5.16) 

where tot
L

W  is the total demand of all 
L

N  low-pressure streams for pressurization, which can be 

calculated as:  

 



L

j

N

j
L

tot
L

WW

1

, (3.17) 

and tot
LH

W


is the total amount of energy that can be obtained by all low-pressure streams from all 

high-pressure streams, which can be calculated as follows:   

 
 




H L

j,i

N

i

N

j

tot
LH

WW

1 1


. (3.18) 
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 Therefore, the total amount of external compression energy needed by pressuring the low-

pressure streams is: 

 
U

C

U

C

U

C WWW
21

 . (3.19) 

 Estimation of the maximum amount of recoverable mechanical energy.  The maximum 

amount of mechanical energy that can be feasibly recovered from high-pressure streams is the 

difference between the amount of mechanical energy to be removed from the high-pressure 

streams and the minimum amount of external expansion utilities.  Here we introduce variable 

,W tot
R

 which can be expressed as follows: 

 U
E

tot
H

tot
R

WWW  , (3.20) 

where tot
H

W  is the total amount of energy of all 
H

N  high-pressure streams for depressurization, 

which can be calculated as:  

 



H

i

N

i

H

tot

H WW
1

. (3.21) 

 On the other hand, this amount can be also expressed by evaluating the difference between 

the total amount of mechanical energy needed by all low-pressure steams and the minimum 

amount of external compression power evaluated in Eq. 3.19, i.e.,  

U

C

tot

L

tot

R WWW  . (3.22) 

 Calculation procedure.  The models and evaluation methods described above can be 

organized as a procedure, which is shown in Fig. 3.2.  The procedure is general for a WEN 

synthesis problem of any size.  It can be readily coded as a computational program using Excel or 

so (Appendix B).  Note that in above formulations, construction of matrices Γ  and P  requires 
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more calculation steps.  This will be illustrated in Case 1 in the following section.  Calculation of 

the remaining matrices and vectors using Eqs. 3.8 to 3.22 are straightforward.  

3.2 Case Studies 

 Two case study problems selected from the open literature are investigated in this section, 

in order to demonstrate the significance and efficacy of the introduced methodology.  As stated, 

the methodology is used to determine the maximum amount of mechanical energy 

thermodynamically feasibly recoverable by a WEN prior to synthesis. 

3.2.1 Case 1- Prediction of the Maximum Recoverable Mechanical Energy of a System 

Operated under Isothermal Conditions 

 This design problem studied by Liu et al. (2014) involves three high-pressure streams and 

two low-pressure streams.  The process stream data is listed in Table 3.1. 
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Figure 3.2.  Flowchart for evaluation of maximum recoverable mechanical energy. 
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The minimum acceptable pressure difference between any pair of high-pressure and low-

pressure streams (i.e., ∆Pmin) is 70 kPa.  It is assumed that each stream is an ideal gas, and the work 

transfer units are operated under isothermal condition.  It is also assumed that the process 

operational efficiency is 100%.   

Table 3.1.  Process stream data for Case 1 

Stream 

No. 

Supply pressure  

(Ps, kPa) 

Target pressure  

(Pt, kPa) 

Volumetric flowrate  

(V, Nm3/s) 

Inlet temperature  

(Ts, K) 

H1 2,000 150 1.23 525 

H2 780 180 0.57 480 

H3 780 220 0.85 420 

L1 200 700 1.85 330 

L2 200 1,600 0.83 360 

Γ is a 23  matrix as follows:  

 





















2313

2212

2111

,LH,LH

,LH,LH

,LH,LH

ΓΓ

ΓΓ

ΓΓ

Γ . (3.23) 

 Among the six elements in the matrix, we show the calculation of only three elements, 

11 L,HΓ , 13 L,HΓ , and 22 L,HΓ , as the derivation of these element values can demonstrate different 

ways of calculation shown in the flowchart of Fig. 3.1. 

a) Evaluation of .Γ
11 L,H   This requires calculation of the lower- and upper-bound values 

of the interval. 

a-1) Calculation of
a

L,H 11
Γ .  Since 

1

s

LP  (200 kPa) is less than the sum of 
1

t

HP (150 kPa) and 

∆Pmin (70 kPa), which is further less than 
1

t

LP  (700 kPa), we have: 

 kPa  22070150Δ min111
 PPΓ t

H

a

L,H . (3.24) 
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a-2) Calculation of 
b

L,H 11
Γ .  Note that 

1

s

HP  (2,000 kPa) is greater than the sum of 
1

t

LP  (700 

kPa) and ∆Pmin (70 kPa).  Thus,  

 
1 1 1

b t

H ,L LΓ P 700  kPa  . (3.25) 

Therefore, 

  007  220
11

,Γ
,LH
 . (3.26) 

b) Evaluation of .Γ
1L,H3   This also requires calculation of the lower- and upper-bound 

values of the interval. 

b-1) Calculation of
a

L,H 1
Γ

3
.  As 

1

s

LP  (200 kPa) is less than the sum of 
3

t

HP (220 kPa) and 

∆Pmin (70 kPa), which is further less than 
1

t

LP  (700 kPa), we have: 

 kPa.  29070220Δ min313
 PPΓ t

H

a

L,H  (3.27) 

b-2) Calculation of 
b

L,H 1
Γ

3
.  Note that 

3

s

HP  (780 kPa) is greater than the sum of 
1

t

LP (700 

kPa) and ∆Pmin (70 kPa).  Thus,  

 kPa  700
13

 t

L

b

L,H j
PΓ . (3.28) 

Thus, 

  007  290
13

,Γ L,H  . (3.29) 

c) Evaluation of .Γ L,H 22   Again, the lower- and upper-bound values of the interval should 

be separately calculated. 

c-1) Calculation of
a

L,HΓ 22
.  Since 

s

LP
2
 (200 kPa) is less than the sum of 

t

HP
2
(180 kPa) and 

∆Pmin (70 kPa), which is further less than 
t

LP
2
 (1,600 kPa), we have: 
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2 2 2, minΔ 180 70 250  kPaa t

H L HΓ P P     . (3.30) 

c-2) Calculation of 
b

L,HΓ 22
.  Note that 

s

HP
2
 (780 kPa) is less than the sum of 

t

LP
2
 (1,600 kPa) 

and ∆Pmin (70 kPa).  Moreover, 
s

LP
2
 (200 kPa) is less than the difference between 

s

HP
2
 (780 kPa) and 

∆Pmin (70 kPa) and further less than 
t

LP
2
 (1,600 kPa).  This gives rise to the following: 

 
2 2 2

b s

H ,L H minΓ P Δ 780 70 710  kPaP     . (3.31) 

Thus,  

  107  250 ,Γ
22 L,H  . (3.32) 

 d) Construction of a complete matrix Γ .  By referring to the calculation examples above, 

three other elements in matrix Γ  can be readily derived.  The following matrix shows a complete 

element calculation result:   

 

   
   
   

220,700 220,1,600

250,700 250,710

290,700 290,710

 
 

  
 
 

Γ . (3.33) 

 Matrix P  has the same dimension as matrix Γ , i.e.,  

 





















2313

2212

2111

,LH,LH

,LH,LH

,LH,LH

PP

PP

PP

P . (3.34) 

In the following derivation, we show how to calculate two elements, 11,LHP  and 12,LHP .  

Calculation of other four elements can be performed in the same way.   

a) Calculation of 
11

L,H
P .  This interval is derived from interval 

11
L,H

Γ .  According to 

Eq. 3.5, the value of index l should be determined first; it must satisfy two conditions: (1) 
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0 but  1  l Nl H , and (2)   ,0
H

Nli    where 3
H

N .  Based on the first condition, l can 

be 2, 1, -1, or -2.  However, based on the second condition, i should be 1 (referred to 
1

H ).  Thus, 

l’s value of -1 or -2 is not valid.  Therefore, we just need to evaluate 
1

11 L,HP and .P L,H

2

11   In this 

case, 
1

H
V  (1.23 Nm3/s) is greater than 

2
H

V  (0.57 Nm3/s).  Thus, we have:  

  700  220,
1111 L,H

1

L,H ΓP . (3.35) 

Since  
1HV  (1.23 Nm3/s) is greater than 

3HV  (0.85 Nm3/s).  Thus, we also have:  

  700  220,
2


1111 L,HL,H ΓP . (3.36) 

Therefore, using Eq. 3.6 gives: 

    700220 ,P  ,PP
2

L,H

1

L,HL,H 111111
   (3.37) 

 b)  Calculation of 12 L,HP .  This interval is derived from 12 ,LHΓ .  The values of index l should 

be decided, based on two conditions: (1) 0 but  1  l Nl H , and (2)   .Nli H0   Again, 

based on the first condition, l can be 2, 1, -1 or -2.  However, based on the second condition, i = 2 

(referred to 
2

H ), l’s value can be only -1 or 1.  Therefore, we just need to evaluate 
1

L,H 12
P



and 

1

L,H 12
P .  Note that since 

2
H

V  (0.57 Nm3/s) is less than 
1

H
V  (1.23 Nm3/s), the following calculation 

is performed based on Eq. 3.5: 

 

   

      007  250700700220250                             

                           

,,

ΓΓ,ΓΓ R b
L,H

b
L,H

a
L,H

a
L,HL,HL,H

111211121112
































 (3.38) 

Then, 
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         

        .,,,,

,,,,,P
1

L,H
12

00 700250700250            

700250700250 700250700250700250






 (3.39) 

Since 
2

H
V  (0.57 Nm3/s) is less than 

3HV  (0.85 Nm3/s), the following calculation should be 

performed based on Eq. 3.5: 

 

   

      .,,

ΓΓ,ΓΓ R b
L,H

b
L,H

a
L,H

a
L,HL,HL,H

112112112

007  290700700290250                            

                           

333
































 (3.40) 

Then, 

 
         

        .,,,,

,,,,,P
12

L,H

902  250 700290700250           

700290700250 700290700250700250
1




. (3.41) 

Therefore,  

    0  0,P,PP
1

L,H

1

L,HL,H 121212




 . (3.42) 

 c) Construction of a complete matrix P .  Using the same approach, we can calculate the 

values of four other elements in matrix P .  All these values are assembled as follows:  

 

   
   
    


















0000

0000

1600220700220

,,

,,

,,

P . (3.43) 

 Using Eqs. 3.8 and 3.9, we can obtain matrix 


W  (3×2) as follows: 

 


















00

00

9221912262

β

..

W . (3.44) 
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 As shown, the mechanical energy of stream H1 will be transferred to streams 
1

L  and 
2

L , but 

streams 
2

H  and 
3

H  will not transfer any.  Note that for the high-pressure streams, the amounts of 

mechanical energy available can be calculated using Eq. 3.12 as: 48620
1

.W
H

  kW, 

82148
2

.W
H

  kW, and 61167
3

.W
H

 kW.  With this information, we are able to derive the values 

of vector 
γW , using Eqs. 3.10 and 3.11, i.e., 

 









































61167

82148

43138

3

2

1

.

.

.

W

W

W

γ







W . (3.45) 

 In the above vector, 
1


W  (138.43 kW) is the remaining amount of energy of stream 
1

H  after 

transferring 262.12 kW to stream 
1

L  and 219.92 kW to stream 
2

L .  The sum of the three element 

values in vector 


W  is the total amount of mechanical energy of the three high-pressure streams 

that cannot be used to pressurize any low-pressure stream.  Thus, we can calculate the amount of 

external expansion energy provided by the system using Eq. 3.14, which gives: 

 W 138.43 148.82 167.61 454.86  kWU

E     . (3.46) 

 Using Eqs. 3.15 to 3.19, we can obtain the following: 

 0U
C

1

W ,  (3.50) 

and 

 
2

514.19 482.04 32.15  kWU

CW    . (3.51) 

 Therefore, the minimum amount of external compression energy needed for the system is: 

 
1 2

32.15  kWU U U

C C CW W W   . (3.52) 
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 Now we can calculate the maximum amount of mechanical energy that can be recovered 

by a WEN using Eqs. 3.20 and 3.21, i.e., 

 (620.48 148.82 167.61) 454.86  482.05  kWtot tot U

R H EW W W       . (3.53) 

The same result can be obtained using Eq. 3.22, i.e., 

 (283.71 230.49) 32.15  482.05  kWtot tot U

R L CW W W      . (3.54) 

 Table 3.2 summarizes the benefit of mechanical energy recovery using a WEN.  It is shown 

that a WEN can recover 93.75% of the energy for stream compression, and 51.45% of the energy 

for stream expansion.   

Table 3.2.  Energy recovery analysis for Case 1 

External 

utility type 

External energy requirement (kW) Energy recovery 

by WEN (%) Without WEN Using WEN 

Compression 514.19 32.15 93.75 

Expansion 936.91 454.86 51.45 

 As a separate effort from this work, we have successfully synthesized a WEN for this 

design problem using a methodology that we developed, which is shown in Fig. 3.3(a).  Since 

network synthesis is beyond the scope of this chapter, derivation of a process flowsheet is not 

discussed here.  In the derived network, the maximum mechanical energy recovery predicted by 

the introduced methodology (482.05 kW) is indeed achieved.  The network contains two work 

exchangers, two compressors, and three expanders.  As a comparison, the solution derived by Liu 

et al. (2014) is plotted in Fig. 3.3(b).  In their solution, four work exchangers are used to recover 

a total of 367.56 kW of mechanical energy, which is 23.75% less than the maximum recoverable 

mechanical energy that was predicted.  In addition, the number of compressors and expanders used 

in their solution is larger than that in our solution.  The comparison of energy recovery and process 

unit requirement is summarized in Table 3.3.  
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Table 3.3.  Performance comparison of WENs by different methods for Case 1 

Solution 

Energy recovery efficiency (%) Number of 

work 

exchangers 

Number of utility units 

Compression Expansion Compressor Expander 

Fig. 3.3(a), by 

this work 
51.45 93.75 2 2 3 

Fig. 3.3(b), by 

Liu et al. (2014) 
39.23 71.48 4 3 5 

 

3.2.2 Case 2 – Prediction of the Maximum Recoverable Mechanical Energy of a System 

Operated under Adiabatic Conditions  

 Razib et al. (2012) studied an interesting WEN design problem, where single-shaft-turbine-

compressor (SSTC) units, instead of (direct) work exchangers introduced in this work, were used 

for mechanical energy recovery.  In their work, a superstructure for WEN configuration was 

proposed and a mixed-integer nonlinear programming (MINLP) model was described for 

identifying an optimal solution in terms of minimum total annualized cost.  Their design problem 

is selected for our case study, aiming at identifying the maximum amount of recoverable 

mechanical energy.  Table 3.4 lists the data of the synthesis problem.  The minimum acceptable 

pressure difference between any pair of high-pressure and low-pressure streams (i.e., ∆Pmin) is 70 

kPa.  It is assumed that each stream is an ideal gas, and the work transfer units are operated under 

adiabatic conditions.  It is also assumed that the process operational efficiency is 100%.   
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Figure 3.3.  Work exchange networks designed by different methods for Case 1: (a) the solution 

by the proposed model-based method to achieve the maximum energy recovery, and (b) the 

solution derived by Liu et al. (2014). 
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Table 3.4.  Process stream data for Case 2 

Stream 

No. 

Supply 

pressure  

(Ps, kPa) 

Target 

pressure  

(Pt, kPa) 

 Flowrate 

(kg/s) 

Source 

temperature  

(Ts, K) 

Target 

temperature  

(Tt, K) 

Heat 

capacity  

(CP, kJ/kg.k) 

H1 850 100 3 600 430 1.432 

H2 960 160 5 580 300 0.982 

H3 800 300 2 960 300 1.046 

L1 100 510 3 300 700 1.432 

L2 100 850 3 300 600 1.432 

Following the procedure in Figs. 3.1 and 3.2, we can derive the element values of matrices 

Γ and P  that are listed below.   

 

   
   
   

170,  510 170,  780

230,  510 230,  850

370,  510 370,  730

 
 

  
 
 

Γ , (3.55) 

and 

 

   
   
    


















0 00 0

850 230510 230

230 170230 170

,,

,,

,,

P . (3.56) 

 As shown, the element values in the last row of matrix P  are all zero.  This means that 

high-pressure stream 
3

H  will not transfer energy to any low-pressure stream. 

 Following the same procedure, we can derive matrix 


W , which contains the information 

about the mechanical energy transferrable between any pair of high-pressure stream and low-

pressure stream.  This matrix is derived as:  

 


















00

22448122803

9023126237

.,.

..


W  (3.57) 
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 The mechanical energy that should be removed from each high-pressure stream can be 

evaluated using Eqs. 3.12 and 3.13: 500441
1

.,W
H

 kW, 803081
2

.,W
H

  kW, and 80417
3

.W
H

  

kW.  Having these data, together with the data in matrix 


W , we can derive vector γW  using Eqs. 

3.10 and 3.11 as follows: 

 








































80417

64942

33575

3

2

1

.

.

.

W

W

W

γ







W . (3.58) 

 Different from Case 1, this vector contains one negative number.  This means stream 
2

H   

does not have enough energy to be transferred to streams 1L  and 2L .  This amount (942.64 kW) 

can be only obtained from an external compression power source (see Eq. 3.15), i.e.,  

 942.64  kW
1

U

CW  . (3.59) 

 This is, however, not the total demand of external compression power.  This other portion 

is ,
2

U
C

W which can be calculated using Eqs. 3.16-3.18 as follows: 

 
   

2
3,406.10 237.26 231.90 803.22 1,488.22

     685.49  kW.

U tot tot

C L H LW W W       


 (3.60) 

Therefore,  

 1,628.13  kW
1 2

U U U

C C CW W W   . (3.61) 

 As to the minimum requirement of the external expansion power, it can be readily obtained 

using Eq. 3.14; the result is: 

 
1 3γ γW W W 575.33 417.80 993.13  kWU

E      . (3.62) 
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 Based on the results obtained above, we can calculate the maximum amount of recoverable 

mechanical energy using either Eq. 3.20 or 3.22, i.e.,  

  1,044.50 1,308.80 417.80 993.13 1,777.97  kWtot tot U

R H EW W W       , (3.63) 

or  

  1,386.60 2,019.50 1,628.13 1,777.97  kWtot tot U

R L CW W W      . (3.64) 

 As shown in Table 3.5, the total amount of work exchanged is 1,777.97 kW, accounting 

for 52.20% of the total energy demanded by the two low-pressure streams, and 64.16% of that 

provided by all high-pressure streams.  This is a very significant contribution to energy reccovery. 

Table 3.5.  Energy recovery analysis for Case 2 

External  

utility type 

External energy requirement (kW) Energy recovery 

by WEN (%) Without WEN Using WEN 

Compression 3,406.10 1,628.13 52.20 

Expansion 2,771.10 993.13 64.16 

To demonstrate the achievability of the predicted maximum energy recovery in design, we 

have synthesized a WEN, which is plotted in Fig. 3.4(a).  Since network synthesis is beyond the 

scope of this chapter, we do not describe the synthesis methodology here.  As shown in Fig. 3.4(a), 

the energy target of recovering 1,777.97 kW is achieved using four work exchangers.  This network 

also contains three compressors and two expanders.  Note that since the 

pressurization/depressurization operation occurs under adiabatic conditions, the temperatures of 

the process streams leaving work exchangers, compressors, and expanders will change.  Therefore, 

there is a need to consider recovery of thermal energy through integrating a heat exchanger 

network (HEN).  In Fig. 3.4(a), three hot streams (marked as HS1 – HS3) and two cold streams 

(marked as CS1 and CS2) are identified, which define a HEN design problem.  A synthesized HEN 
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is shown in Fig. 3.4(b).  This network can recover 36.7% of thermal energy from hot streams 

(645.95 kW out of 1,759.1 kW).   

 In Razib et al. (2012), a WEN is proposed using single-shaft-turbine-compressor (SSTC) 

units, which is different from the work exchanger introduced in this work.  Since their synthesis 

target was to minimize the total annualized cost, a trade-off between the capital cost and operating 

cost was made.  Therefore, a complete comparison between our solution and their solution is not 

approriate.  However, a partial comparison is possible, which is summarized in Table 3.6.  As 

shown, our solution can recover more mechanical energy.  Besides, our solution compares well 

with their solution, in terms of the number of work transfer units (direct work exchangers in our 

solution versus SSTCs in their work, compressors and expanders) as well as the number of heaters 

and coolers. 

Table 3.6.  Performance comparison of WENs by different methods for Case 2 

Type of device 

used in WEN 

Mech. 

energy 

recovered 

(kW) 

High-

pressure 

recovery 

(%) 

Low-

pressure 

recovery 

(%) 

No. of 

exchan-

ger 

units 

No. of 

heaters 

and 

coolers 

No. of 

external 

compre-

ssors 

No. of 

external 

turbines 

Direct work 

exchanger 
1,778 64.16 52.20 4 5 3 2 

SSTC, in 

Razib et al. 

(2012) 

1,573 56.77 46.19 7 11 2 3 
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Figure 3.4.  Flowsheet of heat-integrated work exchange network for Case 2: (a) work exchanger 

network, and (b) heat exchanger network. 
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3.3.3 Discussion 

 As stated, the case studies are presented to demonstrate that the maximum amount of 

recoverable mechanical energy predicted by the introduced model-based methodology is 

achievable during the process flowsheet development phase.  It is shown that the WENs derived 

in the case studies can recover more mechanical energy than those known designs in the open 

literature.  In addition, the work transfer units used in each derived network are fewer than those 

in the known ones.  Thus, energy target setting before WEN synthesis is highly desirable.  The 

introduced model-based energy prediction methodology should be a valuable tool for process 

designers. 

 Although the derived WENs in the case studies are better solutions than known ones, the 

solution optimality cannot be ensured here.  There may be other configurations that can also 

achieve the energy recovery goal at the lowest total annualized cost.  Optimal process flowsheet 

development requires a sophisticated synthesis methodology, which is beyond the scope of this 

chapter. 

3.4 Summary 

 Mechanical energy recovery is a very important issue in energy efficiency improvement in 

the chemical process industry.  However, this has drawn attention only in recent years.  Apparently, 

significant effort on methodological and applied research is needed.  Since the operational mode 

of the introduced (direct) work exchanger is very different from traditional heat transfer units, 

Pinch Analysis, which is a mature methodology for heat exchanger network (HEN) synthesis, is 

not directly applicable for work integration.  Thus, a class of entirely new methodologies for work 

exchanger network (WEN) synthesis is needed. 
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 To facilitate WEN synthesis, we have introduced a thermodynamic modeling and analysis 

methodology for predicting the recoverable mechanical energy prior to process flowsheet 

development.  The methodology is rigorous and general for a synthesis problem of any size, and 

it can be used for work exchange operations under isothermal, isentropic, or polytropic conditions.  

Case studies have shown that the energy targets are set precisely, and they are achievable in the 

process flowsheet development stage.  The comparison with the solutions in the open literature 

has demonstrated the efficacy of the introduced methodology.   

 Note that when a WEN is operated under adiabatic conditions, process stream temperatures 

through different work transfer units will be changed within the system.  In such a case, heat 

integration technology should be used to design a HEN in order to ensure the efficiency of thermal 

energy recovery as well.  Since energy efficiency is of utmost importance in the chemical process 

industry, it is conceivable that significant progress on the research for simultaneous recovery of 

mechanical and thermal energy will be made in the near future.   



www.manaraa.com

50 

 

CHAPTER 4 SYNTHESIS OF COST EFFECTIVE HEAT INTEGRATED WORK 

EXCHANGE NETWORK 

 A mathematical modeling and analysis method was introduced in Chapter 3 to predict the 

maximum amount of mechanical energy that can be feasibly recovered using direct work 

exchangers prior to WEN configuration development (Amini-Rankouhi and Huang, 2017).  As the 

next step towards completion of WEN synthesis, a comprehensive methodology is required.  Also, 

due to temperature and pressure correlation in gas phase streams, recovery of thermal energy 

through heat integration will significantly impact the amount of energy recovery and total 

annualized cost.  In this chapter, we will introduce a thermodynamic model-based synthesis 

approach to develop a heat-integrated work exchanger network (HIWEN), in which direct work 

exchangers may work under different operating conditions.  Case studies will demonstrate that the 

resulting HIWENs can recover the maximum amount of mechanical and thermal energy at the 

lowest cost.   

4.1 Work Exchanger Network Synthesis Methodology 

 In the following, we will introduce a work exchanger network synthesis methodology 

which will allow us to develop the flowsheet after the prediction stage.  The flowsheet can be 

combined with heat exchanger networks that are integrated before or after the WEN synthesis.  

The location of HEN network is assigned based on the design with the lower operating cost.  In 

the end, the design can be modified using an adjustment instruction. 

 Flowsheet development procedure.  For any specific case study with given information, 

after determination of the maximum recoverable energy through the prediction methodology, 

variables NH, NL and matrices P , HW  , LW  , βW , and γW  will be used as inputs for the synthesis 

stage.  Figures 4.1 and 4.2 show the procedure in detail for final flowsheet development. 
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 Placement of work exchangers using matrices WW  and MP .  As discussed in Chapter 

3, Matrix βW  represents the amount of mechanical energy that can be feasibly transferred from 

each individual high-pressure stream to each individual low-pressure stream.  However, the 

amount of energy each high-pressure stream can provide could be higher or lower based on the 

vector γW .  Therefore, to generate WW  which is the matrix of work exchanger workloads between 

i-th high-pressure stream and j-th low-pressure stream, matrix βW  and vector LW would be the 

best options to find the most appropriate location for work exchangers.  Any positive term from 

vector γW  shows that the i-th high-pressure stream can provide sufficient mechanical energy to 

the low-pressure streams it is assigned to through the preparation of matrices P  and βW .  Based 

on the flowchart shown in Fig. 4.1, while 
i

W
γ

 has a positive value or its absolute value is less than 

jL,iH
Wβ , a work exchanger should be placed with workload equal to 

jL,iH
Wβ .  While 

i

W
γ

 has a 

negative value and its absolute value is higher than 
jL,iH

Wβ , a work exchanger should be placed 

with workload equal to 
ijL,iH

WW
γβ   unless 

jL,iH
Wβ  is the largest number in the j-th column.  

Therefore, we can introduce matrix WW  to accommodate work exchangers with highest workloads 

in the following structure: 
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 Generation of matrix MP .  Each term in matrix MP  defines the range of each low-

pressure stream which will receive energy from each high-pressure stream in the range of  s

H

t

H ii
P,P

.  Therefore, after construction of matrix MP , for each term, one work exchanger will be placed 

between  s

H

t

H ii
PP ,  and 

H , L H , Li j i j

a b

M M
P , P 
  

 with energy to be exchanged in amount of 
jL,iH

W
W .  Note 

that based on this methodology, each high-pressure stream may transfer energy in the range of 

 s

H

t

H ii
PP ,  to more than one low-pressure stream which means that there will be splitting in high-

pressure streams under this condition.  Matrix MP  which contains NH×NL intervals will be 

structured as follows: 

 

1 1 1 2 1

2 1 2 2 2

1 2

H ,L H ,L H ,LNL

H ,L H ,L H ,LNL

H ,L H ,L H ,LN N N NH H H L

M M M

M M M
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P P P

P P P

P P P

 
 
 
 
 
 
 
 

MP , (4.2) 

where  

 





 b

M

a

MM
jL,iHjL,iHj,LiH

P,PP . (4.3) 

 To determine element 
j,LiH

M
P , the upper-bound of the interval will be assumed equal to the 

upper-bound of the interval 
ji ,LHP , and the lower-bound will be calculated based on the workload 

of the assigned work exchanger.  Then, 

 
b

L,H

b

M ji
jL,iH

PP  , (4.4) 

and 
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 (4.5) 

 Note that for cases which a heat exchanger network will be located before the work 

exchange network, the formulation shown in Eq. 4.5 will be slightly changed.  The formulation 

will be discussed later. 

 Placement of compressors using vectors 
1CW and 

2CW .  Vector 
1CW represents the 

compressors that are required when the high-pressure streams are not able to provide enough 

energy for each specific low-pressure stream even under thermodynamically feasibility conditions.  

At this stage, one or more compressors with a total workload of 
j1CW  will be placed in the j-th low-

pressure stream for the regions that still require pressurization.  Thus, vector 
1CW  will be structured 

as follows: 
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where 
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 Each term in the j-th row of vector 
2CW  represents placement of one or two compressors 

in the j-th low-pressure stream, which cannot receive energy from any high-pressure stream 

because of thermodynamic feasibility conditions ( minΔin out

H LP P P  and minΔin out

L HP P P  ) which 

was assigned from the initial step of prediction stage in the construction of matrices Γ  and P .  

Comparing the pressure interval of the j-th column in matrix P  with the supply and target 

pressures of the j-th low-pressure stream (i.e.,  t

L

s

L jj
PP , ), the compressors can be placed in the 

beginning/end of the j-th low-pressure stream with a total workload of 
2

CW
j

. 
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 Placement of expanders using vector EW .  Any positive value in the vector γW  

represents the amount of energy that the i-th high-pressure stream cannot provide to any low-

pressure stream and an external expander should be placed.  Therefore, the vector EW  will be 

constructed based on the values from vector γW .  Each non-zero value in vector EW  defines 

placement of one expander in the range of  s

H

t

H ii
PP ,  in the amount of 

iEW  in the i-th high-pressure 

stream.  For high-pressure streams which are also transferring energy to a low-pressure stream 

through work exchange and still requires an expander, there will be stream splitting. 

 

























L
N

E

E

E

W

W

W

2

1

EW , (4.10) 

where 
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
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0             ;
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γγ

γ

ii

i

i WW

W;
W

E
. (4.11) 

 The four final outputs of the flowcharts shown in Figs. 4.1 and 4.2 which are matrices and 

vectors will provide the information for the placement of the unit operations such as work 

exchangers, external compressors, and external expanders.  However, for an energy efficient and 

cost effective design, integration of heat into the work exchanger network design and also capital 

and operating cost estimation should be analyzed.  
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Figure 4.1.  Generation of WW  and MP  . 
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Figure 4.2.  Generation of 
1C

W  , 
2C

W  ,and EW . 
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especially due to temperature dependence.  This is the reason, in processes under the adiabatic 

condition where the outlet temperature after each stage of pressurization or depressurization is not 

the desired temperature and needs to be heated or cooled based on the streams specification, heat 

integration should be taken into consideration in addition to work integration.  With a derived 

WEN flowsheet, the process streams with different temperature profiles will be identified, and a 

corresponding thermal energy recovery system will be synthesized. 

 For design problems with one or more streams with given target temperature.  When 

dealing with streams in the gas phase, temperature plays a key role in the amount of energy that is 

required for compression or provided through expansion.  Depending on the design problem, a 

target temperature may or may not be specified.  For the cases where the outlet temperature of the 

pressurization/depressurization stage is different from the target temperature, heating or cooling is 

required.  In such cases, the heat exchanger network (HEN) can be developed to recover thermal 

energy to minimize the external heating and cooling utilities.  To prevent complexity of the 

solution development, HEN can be placed before or after the WEN.  Figure 4.3 shows a flowchart 

on how to develop HEN before/after WEN and decide the location based on the lowest operational 

cost.  In this stage, the prediction methodology presented in chapter 3 will be used to estimate the 

amount of mechanical energy that will be recovered, and external compression and expansion 

utilities.  Thermal energy recovery and external heating and cooling will be estimated using the 

temperature interval and cascade diagram of pinch analysis (Linnhoff and Flower, 1978).  Note 

that the shaft work formulation in the prediction methodology will differ based on the HEN 

location.   
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Figure 4.3.  Flowchart for HEN location decision making. 

 (a) When a heat exchanger network will be assumed before the work exchanger network, 

the target temperature of high-pressure and low-pressure streams will be assumed constant and 

inlet temperatures of the streams to the WEN system will be calculated based on the target 

temperature provided by the problem design.  As an example, iT  shown in Fig. 4.4(a) can be 

calculated as follows for each individual high-pressure and low-pressure stream under polytropic 

(adiabatic frictional) conditions for ideal gas streams:   
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 Therefore, for shaft work calculation used in the prediction and synthesis stages, target 

temperatures given for each individual stream should be replaced by supply temperatures.  In Table 

4.1, changes that will be made in the formulation of the prediction and synthesis stages for 

polytropic condition (frictional adiabatic) have been summarized.   

 

Figure 4.4.  (a) HEN located before WEN design, and (b) HEN located after WEN design. 
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where elecC  is the cost of electricity ($/kWh), steamC  is the cost of steam used as a heating utility 

($/kWh), CWC  is the cost of cooling water used as a cooling utility, mQ  and nQ  represent the heat 
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duty of the heating and cooling utilities, respectively.  LTN  is the total number of streams required 

for heating and HTN  is the total number of streams required for cooling. 

 (b) When a heat exchanger network will be assumed after the work exchanger network, the 

supply temperature of high-pressure and low-pressure streams will be assumed constant and outlet 

temperature of the streams leaving the WEN system will be calculated based on the supply 

temperature provided by the problem design as shown in Fig 4.4(b).  Each stream temperature that 

will go through stages of pressurization or depressurization will increase or decrease, respectively.  

Equations 4.15 and 4.16 show a calculation example under polytropic (adiabatic frictional) 

conditions for ideal gas streams:   
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and 
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 While the target temperature is specified for a case study, heating or cooling may be 

required to reach the target temperature from 
H

outT  and 
L

outT .  Heat exchanger networks will be 

integrated to recover the thermal energy of the heating and cooling utilities.  The amount of 

mechanical energy that can be recovered and external utilities ( U
E

W ,
U

CW , and 
R

totW  ) will be 

calculated using prediction methodology.  Hot and cold streams will be derived to conduct the 

pinch analysis and the operating cost will be calculated using Eq. 4.14. 

 Comparing the final operating cost from the methods (a) and (b), the HEN will be located 

based on the design with the lowest operating cost. 
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Table 4.1.  Directory of formulas to be used in prediction and synthesis stages for HEN located 

before/after WEN design 
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                                                 (T4.1-8) 

 For design problems where target temperature has not been defined for any stream, 

the amount of recoverable mechanical energy will be calculated using prediction methodology.  

The outlet temperatures after pressurization/depressurization stages will be computed and the work 

exchanger network will be developed using the synthesis framework.  The heat exchanger network 

may not be required as long as the target temperature is not specified for the process streams.   
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4.2.1 WEN Design Modification using Heat Integration 

 Correlation between temperature and pressure will provide the opportunity for further 

modification using heat integration, even after the final HIWEN flowsheet has been developed.  

Comparing the utility cost of external compressors (electricity) and heating or cooling utilities 

(e.g., steam or cooling water), it is concluded that a lower number of external compressors will be 

more profitable.  In Zhuang et al. (2017) study, they have considered integrating heaters and 

coolers for minimizing the utility consumption which shows improvement in energy recovery.  

This helped us to understand that by modifying the inlet/outlet temperature of streams going 

through external expanders, we will be able to change the amount of energy provided through 

expansion which may result in an additional match between that specific expander and an existing 

external compressor.  The temperature modification would be feasible by having an additional 

heater or cooler.  Therefore, by using additional heating/cooling utilities, we can decrease the 

amount energy required for external compressors.  It has been realized that this modification will 

be cost-effective for most case studies.  However, the final total annualized cost (TAC) including 

the total capital and operating cost for each design should be always computed and the final design 

decision should be based on the flowsheet with the lowest total annualized cost.  In case, heat-

integration modification results in higher TAC, we will not take it into the consideration. 

 In the following, the step-by step procedure to conduct the heat integration into the final 

flowsheet to improve the energy efficiency of the whole system is summarized. 

 Step I.  Locate the compressors defined by the vector 
1CW , start with the one (element) 

which has the highest workload. 

 Step II.  Locate the expanders defined by the vector EW , start with the one (element) which 

provides the highest amount of mechanical energy. 
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 Step III.  Calculate the inlet temperatures require for high-pressure streams assigned with 

the expander from step II.  The temperature will be calculated based on the energy that the specified 

compressor from Step I requires.  For the designs in which heat exchanger network is introduced 

before the work exchanger network, outlet temperature will be modified.  Thus, designed HEN 

and WEN from previous stages will not be interrupted in terms of assumptions and calculations.  

 Step IV.  Match the expander and compressor from steps I and II and replace them with a 

work exchanger. The workload will be the same as the compressor workload. 

 Step V.  Add heaters or coolers before/after the work exchanger in the high-pressure stream 

to heat or cool the stream to reach the new temperature defined by step III. 

 Step VI.  Return to step I. 

4.3 Basic Cost Analysis 

 The energy cost in a HIWEN can be readily estimated.  The capital cost of work transfer 

units, especially WE’s, is determined by the number of units used, equipment structure, materials 

used, work transfer capacity, etc.  Cheng and Fan (1968) studied the design of a flow work 

exchanger for a desalination process, where the equipment structure and a basic equipment cost 

estimation were illustrated.  We conducted a preliminary study on equipment design for gas-gas 

work exchange. 

 Similar to the cost estimation formula for heat transfer units, we propose the following 

formula:
βαBC S , where S is the volume of a displacement vessel (cylinder including piston), 

and α and β are the parameters to be determined through experiment.  As a case study, for one 

work exchanger unit, the cost data collected for the main component parts of the unit including the 

displacement vessel, and valves for different sizes and tolerances can be used to determine the 

parameters.  Figure 4.5 gives the cost estimation of a WE based on the volume of the displacement 
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vessel made of stainless steel, working in three different conditions with maximum pressure 

tolerance of the vessels and valves. 

 

Figure 4.5.  Cost estimation for one work exchanger unit. 

 Note that an accurate comparison of the capital cost of a compressor or expander with a 

WE is mainly determined by equipment structure and capacity, materials used for the unit, process 

stream types, especially for gas-gas WE’s, and operating condition.  On the other hand, work 

exchangers dealing with gas phase streams have not been commercialized yet.  In Chapter 5, we 

will comprehensively discuss the challenges and opportunities regarding this type of device 

through simulation of the unit.  At this stage, the preliminary cost estimation could be used as a 

logical basis for the capital cost estimation in WEN synthesis.  However, more reliable cost 

estimation methods should be developed later when the unit is at the stage of manufacturing. 
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4.4 Case Studies 

 In this section, two case study problems from open literature are studied to demonstrate the 

effectiveness of the presented methodologies.  For each case study, we will go through the 

flowchart from Fig. 4.3 to announce the best location for heat exchanger network design prior to 

the synthesis stage.  The synthesis methodology will be implemented to develop the final 

flowsheet.  In the last stage, the heat integration modification will be also applied for any further 

improvement in energy efficiency of the system.  In both case studies, each gas stream has been 

assumed as an ideal gas with constant heat capacities.  Compressors, expanders, and work 

exchangers are operated under the adiabatic/isentropic condition, reversible and with 100% 

efficiency.  Pressure drop and heat losses are negligible in heat exchangers. 

 Case 1.  A design problem from Razib et al. (2012) study is considered to design a cost 

effective heat integrated work exchanger network using (direct) work exchangers.  This example 

has been also analyzed in Chapter 3 for predicting the maximum recoverable mechanical energy.  

This will help us to fasten the derivation as the matrices for the prediction stage.  Razib et al. 

(2012) introduced a superstructure for WEN configuration using single-shaft-turbine-compressor 

(SSTC) units and conducted a mixed-integer nonlinear programming (MINLP) model identifying 

an optimal solution in terms of minimum total annualized cost.  In Table 4.2, data for this synthesis 

problem is summarized.   
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Table 4.2.  Process stream data for Case 1 

Stream 

No. 

Supply 

pressure  

(Ps, kPa) 

Target 

pressure  

(Pt, kPa) 

 Flowrate 

(kg/s) 

Source 

temperature  

(Ts, K) 

Target 

temperature  

(Tt, K) 

Heat 

capacity  

(CP, kJ/kg.k) 

H1 850 100 3 600 430 1.432 

H2 960 160 5 580 300 0.982 

H3 800 300 2 960 300 1.046 

L1 100 510 3 300 700 1.432 

L2 100 850 3 300 600 1.432 

 Step a. Assume HEN before WEN.  Considering the heat exchanger network before work 

exchanger design means that streams will go through a process of heating or cooling before 

entering the work exchanging stage.  The first step is to use the specified outlet temperatures and 

calculate the temperature (
H

iT and 
L

iT ) that each stream will reach after exiting the HEN.  

Knowing the inlet temperature of each stream, stream data will be defined for the HEN problem.  

In the following, using Eqs. 4.12 and 4.13, the outlet temperature of HEN design for streams HP1 

and LP1 is shown: 
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and 
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 (4.18) 

where pC  is the heat capacity, and R is the specific gas constant given by Razib et al. (2012) . 

 With the same structure, all the temperatures are specified and the HEN design problem is 

defined as shown in Fig. 4.6a.  As discussed and shown in Fig. 4.3, after calculating the 
H

iT  and 

L

iT  for all the streams, the maximum amount of mechanical energy that can be recovered for the 

problem design should be predicted using the methodology presented in Chapter 3.  The three 

high-pressure streams will provide 2,676 kW mechanical energy through depressurization where 

two low-pressure streams require 3,132.02 kW energy for pressurization.  Using the prediction 

methodology, 1,700.04 kW of mechanical energy of high-pressure streams can be transferred to 

low-pressure streams which accounts for 63.53% of total energy of high-pressure streams and 

54.28% of the energy low-pressure streams required for pressurization.  The next stage is to predict 

the maximum amount of thermal energy that can be recovered using the pinch analysis.  Similar 

to the prediction stage, the detailed calculations for pinch analysis (i.e., temperature interval and 

cascade diagram) are not shown here.  For this design problem as shown in Fig 4.6a, there are 

three hot streams (H2, H3, and L1) with 1,619 kW energy and two cold streams (H1 and L2) which 

require 688 kW energy to be heated.  The results from pinch analysis show that the total amount 

of energy that the cold streams require can be provided by the hot streams which accounts for 42% 

of the energy of hot streams and 100% of the energy of cold streams.  The operating cost for the 
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current design considering costs of utilities such as electricity, steam and cooling water is 

calculated using Eq. 4.14. 

 Step b. Assume HEN after WEN.  For this step, the design problem will be defined as 

shown in Fig. 4.6b where output temperatures have been calculated using Eqs. 4.15 and 4.16.  The 

prediction stage will be conducted based on the formula for having HEN after the WEN design 

where three high-pressure streams will provide 2,771 kW mechanical energy through 

depressurization and two low-pressure streams require 3,406 kW energy for pressurization.  Using 

the prediction methodology, 1,778 kW of mechanical energy from the high-pressure streams can 

be transferred to low-pressure streams which accounts for 64.16% of the total energy of the high-

pressure streams and 52.20% of the energy of the low-pressure streams required for pressurization.  

The next stage is to predict the maximum amount of thermal energy that can be recovered using 

the pinch analysis.  Similar to prediction stage, the detailed calculations for pinch analysis (i.e., 

temperature interval and cascade diagram) are not shown here.  For this design problem as shown 

in Fig 4.6b, there are three hot streams (H2, H3, and L2) with 1,759 kW energy and two cold streams 

(H1 and L1) which require 646 kW energy to be heated.  The results from pinch analysis show that 

the total amount of energy that the cold streams require can be provided by the hot streams which 

accounts for 36.72% of the energy of the hot streams and 100% of the energy of the cold streams.   

 The results from both methods are shown in Table 4.3.  Comparing the operating cost of 

the two designs shows that the heat exchanger network before the work exchanger design would 

be more cost-effective in terms of operating cost.  For this reason, we will locate the heat exchanger 

network first (Figs. 4.4a and 4.6a) to heat and cool down the high-pressure and low-pressure 

streams and then design a work exchanger network to reach the target pressures and temperatures 

defined for this case study based on Table 4.2.  After the decision on the location of HEN is made, 
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the work exchanger network will be synthesized using the synthesis methodology discussed using 

the formulation with target temperature (Figs. 4.1-4.2, Table 4.1).  When the WEN synthesis is 

completed, the heat exchanger network will be developed based on the maximum thermal energy 

recovery results derived and shown in Table 4.3.  In Fig. 4.6, bracket represents the stream pressure 

in kPa and parenthesis defines the stream temperature in Kelvin. 

 

Figure 4.6.  (a) HEN located before WEN design for Case 1, and (b) HEN located after WEN 

design for Case 1. 
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Table 4.3.  Energy recovery and operation cost comparison based on HEN location for Case 1 

Statistic 
Placement of HEN 

Before WEN After WEN 

External compressors energy (kW) 1,431.98 1,628.13 

External expanders energy (kW) 976.04 993.13 

Mech. energy recovery by WEs (kW) 1,700.04 1,777.97 

External heaters energy (kW) - - 

External coolers energy (kW) 934.54 1,113.14 

Thermal energy recovery by HEs (kW) 688.07 645.95 

OPEX (k$/year) 1,382 1,572 

Celec=0.12 $/kWh; Csteam=0.035 $/kWh; CCW=0.001 kWh;  

Operating time=8000 h/year 

 For design problem with three high-pressure streams and two low-pressure streams, given 

information from Table 4.2, and the design strategy of having the HEN before the WEN design, 

the following matrices are calculated using the prediction methodology from Chapter 3 as inputs 

to the flowcharts shown in Figs 4.1 and 4.2. 

 

   
   
    
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








0 00 0

850 230510 230

230 170230 170
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,,

,,

P . (4.19) 

 The vector of mechanical energy will be provided by each individual high-pressure stream: 

 

1,258.55

1,252.67

164.86

 
 

  
 
 

HW  (4.20) 

 The vector of mechanical energy will be required by each individual low-pressure stream: 

 
1,558.56

1,573.46

 
  
 

LW  (4.21) 

 Matrix 


W , which contains the information about the mechanical energy transferrable 

between any pair of high-pressure and low-pressure streams: 
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and  

 γ

811.18

778.52

164.86

 
 

  
 
 

W . (4.23) 

 Considering NH=3, NL=2, Eqs. 4.19-4.23, and Fig. 4.1, WW  is a 23  matrix as follows: 
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where the six elements will be derived as follows: 

 Evaluation of 
,1 1H LW

W .  Since 
1γ

W  (811.18 kW) is a positive value, we have: 

 kW69266
1111

β
.WW

L,HL,H
W

 . (4.25) 

 Evaluation of 
,1 2H LW

W .  Since 
1γ

W  (811.18 kW) is a positive value, we have: 

 kW68180
2121

β
.WW

L,HL,H
W

 . (4.26) 

 Evaluation of 
,2 1H LW

W .  Since 
2γ

W  (-778.52 kW) is a negative value, where its absolute value 

is less than 
12

β
L,H

W  (902.83 kW), both 
12

β
L,H

W  and 
22

β
L,H

W  (902.83 kW and 1,128.36 kW) are higher 

than the absolute value of 
2γ

W  (-778.52 kW), and 
12

β
L,H

W  (902.83 kW) will not be counted as the 

highest value among 
12

β
L,H

W  and 
22

β
L,H

W  (902.83 kW and 1,128.36 kW), we have: 

 kW83902
1212

β
.WW

L,HL,H
W

 . (4.27) 
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 Evaluation of 
22 L,H

W
W .  Since 

2γ
W  (-778.52 kW) is a negative value, where its absolute 

value is less than 
22

β
L,H

W  (1,128.36 kW), both 
12

β
L,H

W  and 
22

β
L,H

W  (902.83 kW and 1,128.36 kW) are 

higher than the absolute value of 
2γ

W  (-778.52 kW), and 
22

β
L,H

W  (1,128.36 kW) will be counted as 

the highest value among 
12

β
L,H

W  and 
22

β
L,H

W  (902.83 kW and 1,128.36 kW), we have: 

 kW 8434952778361281
22222

γβ
...,WWW

L,HL,H
W

 . (4.28) 

 Evaluation of 
13 L,H

W
W .  Since 

3γ
W  (164.86 kW) is a positive value, we have: 

 
, ,3 1 3 1

β
0   kW

H L H LW
W W  . (4.29) 

 Evaluation of 
23 L,H

W
W . Since 

3γ
W  (164.86 kW) is a positive value, we have: 

 
, ,3 2 3 2

β
0   kW

H L H LW
W W  . (4.30) 

 Therefore, a complete matrix WW  will be constructed using Eqs 4.25-4.30 as follows: 
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 Equation 4.31 shows the workload of each work exchanger unit between each individual 

high-pressure and low-pressure stream where using splitting H1 and H2 will transfer mechanical 

energy to L1 and L2 through four work exchangers.  Now, MP  which is a 23  matrix will be 

constructed to identify the pressure interval in each individual low-pressure stream that the work 

exchangers will be placed. 
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Derivation of two elements, 
11,LH

M
P  and 

22,LH
M

P  will be shown in the following.  Calculation 

of the other four elements can be performed in the same way.   

 a) Calculation of 
11,LH

M
P .  This interval is derived from 11 L,HP .  According to Eq. 4.4, the 

upper-bound of both intervals will be the same and the lower-bound will be calculated using Eq. 

T4.1-7 from Table 4.1.  Note that based on the case study data provided, equation T4.1-7 is 

modified to Eq. 4.34. 
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Thus, 

  230170
11

,P
,LH

M
  (4.35) 

 b) Calculation of 
22,LH

M
P .  This interval is derived from 22 L,HP .  According to Eq. 4.4, the 

upper-bound of both intervals will be the same and the lower-bound will be calculated using Eq. 

T4.1-7 from Table 4.1.  Note that based on the case study data provided, equation T4.1-7 is 

modified to Eq. 4.37. 
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M
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Thus, 

  85040610
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M
  (4.38) 

 c) Construction of a complete matrix MP .  Using the same approach, we have calculated 

the interval of the four other elements in matrix MP  which are assembled as follows:  
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 According to Eq. 4.39, H1 requires splitting which will transfer 266.69 kW through a work 

exchanger in  100,  850  pressure interval to L1 in the pressure interval of  170,  230  and 180.68 

kW within the same pressure interval to L2 in the pressure interval of  170,  230 .  H2 also requires 

splitting and will transfer 902.83 kW through a work exchanger in  100,  850  pressure interval 

to L1 in the pressure interval of  230,  510  and 349.84 kW within the same pressure interval to 

L2 in the pressure interval of  610.40,  850 .  At this stage, H3 will not transfer any mechanical 

energy to any low-pressure stream.   

 Using Eqs. 4.6 and 4.7, vector 
1C

W  will be constructed as follows: 
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. (4.40) 

 Based on Eq. 4.40, one compressor will be placed in L2.  The compressor location can be 

defined as pressure interval of  230,  610.40  by comparing the pressure intervals from the second 

column of matrices MP  and P .  Matrix 
2C

W  will be derived using Eqs. 4.8 and 4.9 as shown 

below: 
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 Comparing the pressure intervals in matrix P  with the supply and target pressure of each 

low-pressure stream from Table 4.2, two compressors will be placed.  One of the compressors will 

be placed in L1 within the pressure interval of  170,  230  with the workload of 389.04 kW and 

the other one in L2 with the workload of 264.42 kW in the pressure interval of  170,  230 .  In the 

end, vector EW  will be derived using Eqs. 4.10 and 4.11. 
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 Thus, two expanders will be placed.  The first one will be in H1 through the splitting in the 

pressure interval of  100,  850  with a workload of 811.18 kW, and the second one is in H3 within 
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the  300,  800  pressure interval with a workload of 164.86 kW.  Figure 4.7a shows the flowsheet 

developed through the WEN synthesis methodology.  In Fig. 4.7a, there are three hot streams 

(marked as HS1 – HS3) and two cold streams (marked as CS1 and CS2), which define a HEN 

design problem.  A synthesized HEN is shown in Fig. 4.7b.  This network can recover 42.4% of 

thermal energy from hot streams (688.07 kW out of 1,619.14 kW).   

 After the development of the work and heat exchanger network using the presented 

methodology, the design can be modified by the instructions provided in the WEN design 

modification using heat integration.  According to Step I, the vector 
1C

W  contains only one 

compressor ( 1C ) which is placed in the  230,610  pressure interval with the workload of 778.52 

kW.  This compressor can be matched with expander 
1E  by modifying the outlet temperature of 

the expander using heat integration based on Step II (this is the type of design where the HEN 

considered before the WEN).  The adjusted outlet temperature for 1E  will be 412 K which will 

cause the expander 1E  to transfer the exact amount of energy the compressor 1C  requires.  

Therefore, after replacing expander 1E  and compressor 1C  with a work exchanger ( 5W ), a heater 

will be placed in the high-pressure stream so it will be heated to the target temperature (430 K).  

Using this adjustment, the total mechanical energy recovery improved 31%, and external 

compression utility consumption and expansion utility requirements decreased 54% and 17%, 

respectively.   

 In conclusion, to reach the target temperature and pressure, three high-pressure streams and 

two low pressure streams will go through a heat exchanger network (Fig. 4.7b) first and then a 

work exchanger network (Fig. 4.8) in which the maximum amount of thermal and mechanical 

energy will be recovered using this cost-effective design. The results are shown in Table 4.4. 
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Figure 4.7.  Flowsheet of heat-integrated work exchange network for Case 1 :(a) work exchanger 

network, (b) heat exchanger network. 
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Figure 4.8.  Flowsheet of modified heat-integrated work exchange network for Case 1. 

Table 4.4.  Energy recovery analysis for Case 1 

Design 

Mech. 

energy 

exchange 

(kW) 

Thermal 

energy 

exchange 

(kW) 

External 

compression 

utility 

(kW) 

External 

expansion 

utility 

(kW) 

External 

heating 

utility 

(kW) 

External 

cooling 

utility 

(kW) 

Without 

HEWEN 
- - 3,406.00 2,771.10 645.98 1,759.62 

With 

HEWEN 
1,700.01 688.10 1,431.98 976.04 - 931.14 

Modified 

HEWN 
2,478.53 688.10 653.46 164.86 47.93 931.14 

 Case 2.  This design problem has been studied by Onishi et al. (2014) and Huang and 

Karimi (2016).  In both studies, a superstructure for work-heat exchanger network configuration 
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using single-shaft-turbine-compressor (SSTC) units was introduced and a mixed-integer nonlinear 

programming (MINLP) model was conducted for identifying an optimal solution in terms of the 

minimum total annualized cost.  In Table 4.5, data for this synthesis problem is summarized.   

Table 4.5.  Process stream data for Case 2 

Stream 

No. 

Supply 

pressure  

(Ps, kPa) 

Target 

pressure  

(Pt, kPa) 

 Flowrate 

(kg/s) 

Source 

temperature  

(Ts, K) 

Target 

temperature  

(Tt, K) 

Heat 

capacity  

(CP, kJ/kg.k) 

H1 900 100 15 350 350 2.454 

H2 850 150 15 350 350 0.982 

H3 700 200 15 400 400 1.432 

L1 100 700 18 390 390 1.432 

L2 100 900 15 420 420 2.454 

 Step a.  Assume HEN before WEN.  Considering the heat exchanger network before the 

work exchanger design means that streams will go through a process of heating or cooling before 

entering the work exchanging stage.  The first step is to use the specified outlet temperatures and 

calculate the temperature (
H

iT and 
L

iT ) each stream will reach after exiting the HEN.  Knowing 

the inlet temperature of each stream, stream data will be defined for the HEN problem.  In the 

following, using Eqs. 4.12 and 4.13, the outlet temperature after the HEN design is shown for 

streams HP1 and LP1. 
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 (4.43) 

and 
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where k  is the heat capacity ratio (adiabatic exponent).   

 With the same structure, all the temperatures are specified and the HEN design problem is 

defined as shown in Fig. 4.9a.  As discussed and shown in Fig. 4.3, after calculating the 
H

iT  and 

L

iT  for the streams, the maximum amount of mechanical energy that can be recovered for the 

problem design should be predicted using the methodology presented in Chapter 3.  The three 

high-pressure streams will provide 18,257.91 kW mechanical energy through depressurization 

where two low-pressure streams require 11,495.23 kW energy for pressurization.  Using the 

prediction methodology 8,846.94 kW of mechanical energy of the high-pressure streams can be 

transferred to the low-pressure streams which accounts for 48.46% of the total energy of the high-

pressure streams and 76.96% of the energy of the low-pressure streams required for pressurization.  

The next stage is to predict the maximum amount of thermal energy that can be recovered using 

the pinch analysis.  Similar to the prediction stage, the detailed calculations for pinch analysis (i.e., 

temperature interval and cascade diagram) are not shown here.  For this design problem as shown 

in Fig. 4.9a, there are three cold streams (H1, H2, and H3) which require 18,257.91 kW energy to 

be heated and two hot streams (L1 and L2) with 11,495.23 kW energy.  The results from pinch 

analysis show that about 2,908.2 kW energy that cold streams require can be provided by hot 

streams which accounts for 25% of the energy of the hot streams and 16% of the energy of the 

cold streams.   
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 Operating cost for the current design considering the cost of utilities such as electricity, 

steam and cooling water is calculated using Eq. 4.14. 

 Step b.  Assume HEN after WEN.  For this step, the design problem will be defined as 

shown in Fig. 4.9b where output temperatures have been calculated using Eqs. 4.15 and 4.16.  The 

prediction stage will be conducted based on the formula for having the HEN after the WEN design 

where three high-pressure streams will provide 10,606.49 kW of mechanical energy through 

depressurization and two low-pressure streams require 20,979.15 kW of the energy for 

pressurization.  Using the prediction methodology 6,006.59 kW of mechanical energy of the high-

pressure streams can be transferred to the low-pressure streams which accounts for 56.63% of the 

total energy of the high-pressure streams and 28.63% of the energy of the low-pressure streams 

required for pressurization.  The next stage is to predict the maximum amount of thermal energy 

that can be recovered using the pinch analysis.  Similar to the prediction stage, the detailed 

calculations for pinch analysis (i.e., temperature interval and cascade diagram) are not shown here.  

For this design problem as shown in Fig 4.9b, there are three cold streams (H1, H2, and H3) which 

require 10,606.54 kW energy to be heated and two hot streams (L1 and L2) with 20,979.3 kW 

energy.  The results from pinch analysis show that the total amount of energy that cold streams 

require can be provided by hot streams which accounts for 50.56% of the energy of the hot streams 

and 100% of the energy of the cold streams.   

 The results from both methods are summarized in Table 4.6.  Comparing the operating cost 

of the two designs shows that the heat exchanger network before the work exchanger design would 

be more cost-effective in terms of operating cost.  For this reason, we will locate the heat exchanger 

network first (Fig. 4.4a and 4.9a) to heat and cool down the high-pressure and low-pressure streams 

and then design a work exchanger network to reach the target pressure and temperature defined 
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for this case study based on Table 4.5.  After the decision on the location of the HEN is made, the 

work exchanger network will be synthesized using the synthesis methodology (Figs. 4.1-4.2) and 

the formulation considering the target temperature (Table 4.1).  The heat exchanger network will 

be also developed based on the maximum thermal energy recovery results shown in Table 4.6. 

Table 4.6.  Energy recovery and operation cost comparison based on HEN location for Case 2 

Statistic 
Placement of HEN 

Before WEN After WEN 

External compressors energy (kW)  2,648.29   14,972.56  

External expanders energy (kW)  9,410.97   4,599.90  

Mech. energy recovery by WEs (kW)  8,846.94   6,006.59  

External heaters energy (kW)  15,349.71   -    

External coolers energy (kW)  8,587.03   10,372.76  

Thermal energy recovery by HEs (kW)  2,908.20   10,606.54  

OPEX (k$/year)  6,909   14,457  

Celec=0.12 $/kWh; Csteam=0.035 $/kWh; CCW=0.001 kWh;  

Operating time=8000 h/year 
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Figure 4.9.  (a) HEN located before WEN design for Case 2, and (b) HEN located after WEN 

design for Case 2. 

 For design problem with three high-pressure streams and two low-pressure streams, given 

information from Table 4.5 and the design strategy of having the HEN before the WEN design, 

the following matrices are calculated using the prediction methodology as inputs to the flowcharts 

shown in Figs 4.1 and 4.2. 
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 The vector of mechanical energy will be provided by each individual high-pressure stream: 
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3,307.17

3,697.73

HW

 
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  
 
 

. (4.46) 

 The vector of mechanical energy will be required by each individual low-pressure stream: 
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LW . (4.47) 

 Matrix 


W , which contains the information about the mechanical energy transferrable 

between any pair of high-pressure and low-pressure streams. 
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and  
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 Considering NH=3, NL=2, Eqs. 4.45-4.49, and Fig. 4.1, WW  is a 23  matrix as follows: 
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 The derivation of all the six elements is shown below: 

 Evaluation of 
11 L,H

W
W .  Since 

1γ
W  (2,406.08 kW) is a positive value, we have: 

 kW513433
1111

β
.,WW

L,HL,H
W

 . (4.51) 
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 Evaluation of 
21 L,H

W
W .  Since 

1γ
W  (2,406.08 kW) is a positive value, we have: 
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 . (4.52) 

 Evaluation of 
12 L,H

W
W .  Since 

2γ
W  (3,307.17 kW) is a positive value, we have: 
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 Evaluation of 
22 L,H

W
W .  Since 

2γ
W  (3,307.17 kW) is a positive value, we have: 
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 Evaluation of 
13 L,H

W
W .  Since 

3γ
W  (3,697.73 kW) is a positive value, we have: 
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 Evaluation of 
23 L,H

W
W .  Since 

3γ
W  (3,697.73 kW) is a positive value, we have: 
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β
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. (4.56) 

 Therefore, the complete matrix WW  will be constructed using Eqs. 4.51-4.56 as follows: 
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 Equation 4.57 shows the workload of each work exchanger unit between each individual 

high-pressure and low-pressure stream.  Using splitting, H1 will transfer mechanical energy to L1 

and L2 through two work exchangers.  MP  which is a 23  matrix will be constructed to identify 

the pressure interval in each individual low-pressure stream that the work exchangers will be 

placed in.   
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Derivation of the two elements, 
1 1H ,LM

P and 
2 2H ,LM

P  will be shown in the following.  

Calculation of the other four elements can be performed in the same way.   

 a) Calculation of 
1 1H ,LM

P .  This interval is derived from 11 L,HP .  According to Eq. 4.4, the 

upper-bound of both intervals will be the same and the lower-bound will be calculated using Eq. 

T4.1-7 from Table 4.1.  Note that based on the case study data provided, equation T4.1-7 is 

modified to Eq. 4.60. 
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Thus, 

  700170
11

,P
,LH

M
  (4.61) 

 b) Calculation of 
2 2H ,LM

P .  This interval is derived from 22 L,HP .  According to Eq. 4.4, the 

upper-bound of both intervals will be the same and the lower-bound will be calculated using Eq. 

T4.1-7 from Table 4.1.  Note that based on the case study data provided, equation T4.1-7 is 

modified to Eq. 4.63. 
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and 
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Thus, 

  830170
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  (4.64) 

 c) Construction of a complete matrix MP .  Using the same approach, we have calculated 

the values of the four other elements in matrix MP .  All these values are assembled as follows:  
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 According to Eq. 4.65, H1 requires splitting which will transfer 3,343.51 kW through a 

work exchanger in the  100,900  pressure interval to L1 in the pressure interval of  170,700  and 

5,503.43 kW within the same pressure interval to L2 in the pressure interval of  170,830 .  H2 and 

H3 will not transfer any mechanical energy to any low-pressure stream.   

 Using Eqs. 4.6 and 4.7, vector 
1C

W  will be constructed as follows: 
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. (4.66) 

 Matrix 
2C

W  will be derived using Eqs. 4.8 and 4.9 as shown below: 
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 According to Eqs. 4.66 and 4.67, there will be only two compressors which will be placed 

by comparing the pressure intervals in matrix P  with the supply and target pressures of each low-

pressure stream from Table 4.5.  The comparison will end up with placing three compressors, the 

first one in L1 within the pressure interval of  100,170  with the workload of 943.81 kW, the 

second and third ones in L2 with the total energy of 1,443.87 kW in the pressure intervals of

 100,170  and  830,900  with workloads of 1,350.93 kW and 353.55 kW, respectively.  In the 

end, vector EW  will be derived using Eqs. 4.10 and 4.11. 
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 Thus, three expanders will be placed.  The first one will be in H1 through the splitting in 

the pressure interval of  100,900  with the workload of 2,406.08 kW, the second one is in H2 

within the  150,850  pressure interval with the workload of 3,307.17 kW, and the third one is in 

H3 within the  200,700  pressure interval with the workload of 3,697.73 kW.  Figure 4.10a shows 

the flowsheet developed using the WEN synthesis methodology.  In Fig. 4.10(a), there are three 

hot streams (marked as HS1 – HS3) and two cold streams (marked as CS1 and CS2), which define 

a HEN design problem.  A synthesized HEN is shown in Fig. 4.10(b).  This network can recover 

25% of the thermal energy from the hot streams (8,587.03 kW out of 11,495.23 kW).   
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 After the development of the work and heat exchanger networks using the presented 

methodologies, the design will be analyzed for any possibility of additional modification by heat 

integration.  According to Eq. 4.66, there will not be any compressor placed using vector
1C

W .  

Thus, there will not be any low-pressure stream in the thermodynamic feasibility pressure interval 

to be able to receive energy from the high-pressure streams by adjusting the temperature.   

 For this case study, we have conducted a cost analysis to estimate the Total Annualized 

Cost (TAC) including Capital Cost (CAPEX) and Operating Cost (OPEX).  For a reasonable 

comparison of the final results with Huang and Karimi (2016) and Onishi et al. (2014), we have 

used the exact same assumptions for the cost calculation such as formulation, equipment cost 

coefficient and fixed cost, and utility cost.  As mentioned earlier, those studies have used SSTC 

units for the mechanical energy recovery.  Therefore, for the capital cost estimation of work 

exchangers in our design, we have used the base cost formula discussed in Section 4.3 and Fig. 

4.5.  The capital cost of external expanders ( ECAPEX ) is computed using Eq. 4.69. 

  U

E E ECAPEX FC FC F   (4.69) 

where 
U

EFC  is the external expander fixed cost and is assumed to be 200 k$/year, EFC  is the cost 

coefficient and is equal to 1 k$/year, and F  is the flowrate of stream flows through the expander.  

The capital cost of external compressors ( CCAPEX ) is computed using Eq. 4.70. 

  U

C C CCAPEX FC FC F   (4.70) 

where 
U

CFC  is the external compressor fixed cost and is assumed to be 250 k$/year, CFC  is the 

cost coefficient and is equal to 1 k$/year, and F  is the flowrate of stream flows through the 
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compressor.  The capital costs of heat exchangers, heaters, and coolers ( HECAPEX ) are computed 

using Eq. 4.71. 

  
δ

HE HCAPEX FC C A   (4.71) 

where HFC  is the heat exchanger fixed cost and is assumed to be 3 k$/year, C  is the cost 

coefficient and is equal to 0.03 k$/year, A  is the heat exchanger area, and δ  is the exponent for 

area cost of the HE and is equal to 1.  The capital cost of the work exchanger ( WECAPEX ) will be 

computed as follows: 

 
βαWECAPEX S  (4.72) 

where S  is the volume of one vessel and cost parameters assuming stainless steel, the pressure 

tolerance of 1,034 MPa for a vessel and 5 MPa for valves, are 995.78 and 0.36 for α  and β , 

respectively.   

 For operating cost estimation, Eq. 4.14 and the assumptions for the utility cost from Table 

4.6 are used.  The cost estimation of all the units for case 2 shown in Fig. 4.10 is summarized in 

Table 4.7.  The Total Annualized Cost (TAC) for this case study using the heat-integrated work 

exchange synthesis design using work exchangers will be $9,666,994.  In Table 4.8, the results for 

the cost-effective design of the heat exchanger network (Fig. 4.10b) combined with a work 

exchanger network (Fig. 4.10a) that can recover a significant amount of thermal and mechanical 

energy are summarized and compared with the Onishi et al. (2014) and Huang and Karimi (2016) 

work.   
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Figure 4.10.  Flowsheet of heat-integrated work exchange network for Case 2: (a) work 

exchanger network, and (b) heat exchanger network. 
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Table 4.7.  CAPEX and OPEX of units in Case 2 

Equipment Size Factor CAPEX ($/year) OPEX($/year) 

HE1 A=9,570 m2 290,118 - 

HE2 A=952 m2 31,554 - 

HET1 A=734 m2 118,226 2,480,904 

HET2 A=182 m2 76,816 781,654 

HET3 A=245 m2 25,021 1,035,364 

CL1 A=3,841 m2 8,469 38,522 

CL2 A=2,461 m2 10,351 30,174 

C1 F= 25.77 kW/k 275,776 906,058 

C2 F= 36.81 kW/k 286,810 339,408 

C3 F= 36.81 kW/k 286,810 1,296,893 

E1 F= 7.87 kW/k 207,871 - 

E2 F= 14.73 kW/k 214,730 - 

E3 F= 21.48  kW/k 221,480 - 

W1 
S= 20 L (10 

vessels used) 
351,993 - 

W2 
S= 20 L (10 

vessels used) 
351,993 - 

Total 2,758,018 6,908,976 

 To size the heat exchangers, heaters and cooler, the formulation to compute the area and 

overall heat transfer coefficient is given by the Huang and Karimi (2016) study and can be found 

in their publication.  Using the formulation presented, the details for the area calculation will be 

straightforward so they will not be discussed here.  The size factor for compressors and expanders 

is the multiplication of flowrate and heat capacity given for each stream using Table 4.5 and Fig. 

4.10a.  To size the work exchangers, the volume of each vessel is required.  However, to estimate 

the volume, the cycle time of the energy recovery in the device and volumetric flowrate of the 

stream flows through the unit are required.  Cycle time of work exchangers dealing with gas phases 

will be addressed in Chapter 5.  However, due to several challenges in estimation of cycle time, at 

this stage, we will make assumptions based on the worst case scenario.  In addition, the volumetric 

flowrate for the streams is not provided and streams components are not available.  Therefore, the 

mass flowrate given cannot be converted to a volumetric flowrate.  It is expected that the streams 
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have a high volumetric flowrate based on the given mass flowrate and considering the low dense 

gases flowing through.  Therefore, we have considered each vessel of the work exchanger with 

volume of 20 L which is among the largest displacement vessels were found in commercial scale; 

and assumed 10 vessels in each unit.  Therefore, the cost that will be calculated from Eq. 4.72 for 

a vessel of 20 L will be multiplied by 10. 

Table 4.8.  Performance comparison of HIWENs by different methods for Case 2 

Design 
This 

Work 

Onishi et al. 

(2014) 

Huang and Karimi  

(2016) 

Mech. energy exchange (kW) 8,847 10,474 11,579 

Thermal energy exchange (kW) 2,908 8,794 15,920 

Compression utility (kW) 2,648 8,840 7,734 

Expansion utility (kW) 9,411 - - 

Heating utility (kW) 15,349 1,680 5,276 

Cooling utility (kW) 8,587 10,520 13,010 

No. of WEs 2 

3 SSTC 

Compressors+3 SSTC 

Turbines 

3 SSTC 

Compressors+3 SSTC 

Turbines 

No. of HEs 2 8 6 

No. of HET and CL 5 5 9 

No. of compressors 3 2 1 

No. of expanders/valves 3 1 - 

CAPEX (k$/yr) 2,758 - 1,180 

OPEX (k$/yr) 6,909 - 9,006 

TAC (k$/yr) 9,667 10,502 10,187 

 In general, our design is less complicated with lower compression, heating, and cooling 

utility consumption.  Note that due to pressure and temperature correlations, the assumptions made 

regarding the heat integration will impact the total amount of energy high-pressure streams can 

provide during the depressurization, and low-pressure streams required for pressurization.  

Therefore, total mechanical energy recovery will not be necessarily the best parameter for 

comparison at this stage.  The capital cost for our design is higher than the Huang and Karimi 

(2016) superstructure design which can be explained as the result of more compressors and 

expanders, in addition to the cost of work exchangers which is still in the stage of preliminary 
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estimation.  The total capital cost of SSTC compressors and SSTC turbines in the Huang and 

Karimi (2016) study is 431,382 $/year but for the work exchangers in our design is 703,986 $/year.  

As mentioned earlier, the unit sizing and cost estimation for the work exchanger has been 

performed under several assumptions considering the worst case scenario.  Therefore, we are 

expecting the cost to decrease as more details are available regarding the design of work 

exchangers.  The operating cost in our design is significantly lower than Huang and Karimi (2016) 

design as a result of lower utility consumption.  The total Annualized Cost (TAC) of our design is 

about 5% lower than that for the Huang and Karimi (2016) superstructure.  Even though we have 

not performed an optimization study for TAC minimization, our final solution is more cost 

effective than the previous studies.  In addition, the solution is much simpler, and easier to conduct.  

This shows the efficacy of the presented heat integrated work exchange network synthesis 

methodology. 

4.5 Summary   

 In this chapter, we  proposed a heat-integrated work exchanger network synthesis 

methodology to develop a cost-effective network for mechancial and thermal energy recovery.  It 

is preferred to determine the location of the HEN prior to completion of the final WEN network.  

However, in some studies, the HEN has been always located before the WEN design when low-

pressure streams are considered as hot and high-pressure streams as cold streams.  The goal is to 

increase the amount of energy provided by expansion and decrease the amount of energy required 

for compression.  We believe that to be able to have a general methodology for heat and work 

exchanger network synthesis, the location of heat integration should be announced based on the 

option with the least operating cost which represents the design with lowest energy-intensive 
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utility.  As shown in case studies, using the presented methodology we are able to derive less 

complicated designs with better performance in terms of utility consumption and operating cost. 

 Capital cost estimation was conducted for the first time in a design in which direct work 

exchangers are integrated.  The cost estimation for the work exchanger can be considered as an 

early investigation in the economic analysis of the direct type of mechanical energy recovery 

devices known as work exchangers.  However, it still requires further studies while the device is 

being modified to be used in chemical processes dealing with gas phase streams.   

 The heat-integrated work exchange network synthesis methodology can be also developed 

in the future for the design of more realistic flowsheets in terms of assumptions made through the 

flowsheet construction, temperatures computed using the heat-integration technique before or after 

the WEN, unit operation size and capacity, and the possibile phase change through the 

compression/expansion.  Development of a framework for a simultaneous recovery of thermal and 

mechancial energy without initial assumptions of one network before or after the other, can be 

defined as a future study.   
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CHAPTER 5 MODELING AND SIMULATION OF A PISTON-TYPE WORK 

EXCHANGER FOR MECHANICAL ENERGY RECOVERY 

 The significance of energy efficiency improvement in chemical processes has led to 

increasing research opportunities for innovative process integration technologies.  Recovery of 

mechanical energy through work exchanger network synthesis is a type of process integration that 

has been recently drawn a lot of attention.  Direct (one-step) Work Exchangers (WEs) can be 

considered as a type of process unit for mechanical energy recovery in chemical plants.  The type 

of device was first introduced for reverse osmosis (Cheng et al., 1967; Cheng and Cheng, 1970).  

Dual Work Exchange Energy Recovery Device (DWEER) is a piston-type WE that has been 

widely used for seawater reverse osmosis (RO) desalination, which is one of the most efficient 

energy recovery systems developed to date.  However, this type of unit cannot be directly used for 

the pressurization/depressurization of process streams in the gas phase in chemical plants.   

5.1 Objectives and Significance 

 The work exchanger dealing with gas phase streams will have a different behavior.  The 

safety issues regarding leakage and mixing losses will increase when dealing with gas streams.  

These will also impact the efficiency of the system, the maintenance cost, and the operating cost.  

DWEERs are always running with the same materials (i.e., brine and seawater) which are non-

hazardous and non-flammable.  On the other hand, the work exchangers for mechanical energy 

recovery through WEN will be operated using different types of materials and under various 

operating conditions such as temperature, pressure, and physical properties.  Therefore, deep 

investigation through work exchanger component parts, future unit modification to ensure the 

safety, a possible improvement on unit efficiency, and compatiblity of the unit with different types 

of material would be required.   



www.manaraa.com

98 

 

 To show the feasibility of using a direct work exchanger as a device for mechanical energy 

recovery, we need to have better insight on the device performance.  Computational modeling and 

simulation of the device could be the first stage prior to manufacturing of the unit in the pilot and 

industrial scales.  To start the modeling of the work exchangers, the first step is to collect sufficient 

information about the device.  A detailed description has been provided by Cheng and Fan (1968) 

regarding the size, structure, and work exchanger operation.  In Chapter 2, the description of 

pressurization and depressurization steps provided by Cheng et al. (1967) has been discussed.   

 Based on the description provided for the desalination application, the device contains two 

displacement vessels, check valves, control valves, and three additional pumps.  The pumps will 

be used for maintaining the inlet pressure of the low-pressure stream higher than the outlet pressure 

of the high-pressure stream, maintaining the inlet pressure of the high-pressure stream higher than 

the outlet pressure of the low-pressure stream, and pressurizing the excess part of the feed.  To 

manufacture the unit, commercially available component parts were used with some modifications.  

Figure 5.1 shows a schematic of one piston-type work exchanger provided by Cheng and Fan 

(1968).   

 The unit contains two 2 gallon floating piston-type accumulators as the two displacement 

vessels (O1 and O2), four hydraulic check valves (v1, v2, v3, and v4), and two 2-way control valves 

or one 4-way hydraulic valve as the valves for v5, v6, v7, and v8.  The details for other component 

parts such as pumps, flowmeters, the programming timer, and pipe fittings have not been discussed 

here since they will not impact the simulation and modeling setup at this stage.  However, those 

parts should be studied at the time of manufacturing of the unit for gas phase streams.   
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Figure 5.1.  Schematic illustration of a piston-type work exchanger (Cheng and Fan, 1968). 

 The component parts were connected by 3/4", schedule-160 steel pipes in assembling the 

unit.  The unit was operable up to 102 atm (1,500 psig) and delivered 2.45 m3/hr (9 gpm).  Water 

was used as the working fluid, and the cycle time for 2.45 m3/hr (9 gpm) capacity was adjusted to 

20 seconds.  The maximum displacement of the piston per stroke was 6.81 L (1.8 gallons) but at 

each half cycle, 5.6 L (1.5 gallons) entered the vessel.  To solve the problem of non-steady flow 
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because of the valve shifting, they installed an accumulator.  It was mentioned that each of the 

flowrates multiplied by half of the time cycle time should not exceed the volume filled by the 

piston in a stroke, and the inlet rate for each side should be adjusted to the same value.  Also, it 

was discussed that the capacity of the unit can be increased to 5.45 m3/hr (20 gpm) by changing 

pipe fittings, valves, and pipe size to 1". 

 Dual Work Exchanger Energy Recovery (DWEER) which is being manufactured at the 

industrial scale by Flowserve consists of two pressure vessels, four check valves, and one patented 

LinX control valve.  The single unit can process up to 75 bar and 350 m3/hr or 1.4 mgd and to 

achieve higher volume, the manufacturer suggested placing multiple units in parallel.  This device 

is being used in Reverse Osmosis (RO) plants around the world such as in Spain, Australia, Dubai, 

and Singapore.  Recovering up to 98% of the energy in the brine stream, operational flexibility, 

robust design, high availability, low maintenance costs, and low mixing and leakage rates have 

been mentioned as some of the main features (Flowserve, 2018).   

 In the following, the piston-type work exchanger has been simulated using customizing 

operation models in Aspen Plus and computational fluid dynamic modeling with Ansys Fluent.  

The main objective is to analyze the performance of the unit which is being used in desalination 

processes when dealing with the gas phase and different type of materials. 

5.2 Modeling and Simulation of Work Exchanger Systems Using Aspen Plus 

 Simulation of unit operation is a tool to evaluate the process configuration and help to 

understand the parameters which impact the process specifications.  The piston-type work 

exchanger is a new unit operation which can be used in process systems for mechanical energy 

recovery and is not available as a built-in unit operation similar to heat exchangers in any process 



www.manaraa.com

101 

 

simulation software.  However, Aspen Plus as one of the promising process simulators in the 

chemical industry allows users to add customized modules using Aspen Custom Modeler.   

 Aspen Custom Modeler in combination with Microsoft Excel and Visual Basic can be used 

to simulate a unit operation and include the customized unit into the Aspen Plus model library.  

This will enable users to model the particular unit operation, build the model library and export it 

into Aspen Plus for the process simulation.  In the following, the simulation procedure is discussed. 

5.2.1 Construction of work exchanger module with Aspen Plus 

 In a piston-type work exchanger, the high-pressure and low-pressure streams will be each 

on one side of the piston without having any contact.  Due to opening and closing of the valves 

and movement of the piston, the pressure of each stream will change.  The temperature may also 

differ under non-isothermal conditions.  The module includes two inlet feeds and two outlet 

streams, one of each for the high-pressure stream and the low-pressure stream.   

 

Figure 5.2.  Schematic representation of a work exchanger module. 

Figure 5.2 which shows the work exchanger module is a general representation of the unit 

which means that multiple vessels and valves for inlet and outlet streams will be included in the 

presented module.  However, similar to other unit operations in Aspen Plus, the model formulation 

impacts how the outlet stream specification will be calculated using the given inlet stream 

information and additional parameters.  In the work exchanger module, the high-pressure stream 

will be depressurized (expanded) and the low-pressure stream will be pressurized (compressed).  

Therefore, the following equations will be used in the simulation model for the unit operated with 

streams assumed to behave as ideal gas. 

in in

L L, P ,Tin

LF

L L, P ,Tout out out

LF

in in, P ,Tin

H H HF

, P ,Tout out out

H H HF
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 There will not be any reaction, and mixing or leakage through the process.  Then, Eqs. 5.1- 

5.4 represent the model mass balance.  The mass balance for the compartment containing the high-

pressure stream will be as follows:   

 
in out

H HF F , (5.1) 

and 

 
in in out out

H H H HF C F C . (5.2) 

For the compartment containing the low-pressure stream: 

 
in out

L LF F , (5.3) 

and 

 
in in out out

L L L LF C F C . (5.4) 

where F  represents the mass flowrate and C  composition. 

 Based on the system degree of freedom, the outlet pressure of the high-pressure or low-

pressure stream should be given.  Therefore, the outlet pressure of the high-pressure stream will 

be defined through one of the three conditions shown in Eq. 5.5.  
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 In a similar way, the outlet pressure of the low-pressure stream will be defined using Eq. 

5.6. 
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where W  represents the mechanical energy exchanged between the high-pressure and low-

pressure streams through the process.  Table 2.1 can be used as the formula directory.  n  represents 

the molar rate.  pC  is the heat capacity, R  is the gas constant, and m  is the adiabatic (polytropic) 

exponent.  The outlet temperature for either the high-pressure or low-pressure stream will be 

calculated using Eq. 5.7. 
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5.2.2 Simulation Procedures 

 According to the modeling described in the previous section, the simulation has been 

completed.  As mentioned earlier, in Aspen Plus users can create customized modules by 

modifying the available FORTRAN interface subroutine and the Excel model (Aspen Technology 

Inc., 2013).  The simulation steps have been summarized in the following.   

 Setting up the model in Aspen Plus.  After creating an Aspen Plus blank simulation, from 

User models, User2 icon PLUG will be selected as the model with two inlets and two outlet 

streams. 
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 Setting up the Excel model.  An Excel template available in the Aspen Plus user library 

will be customized based on our unit operation model.  The Excel file contains several sheets for 

modifying the model integer and real parameters, input information and required formula for 

calculation of the model output streams.  The gas constant and mechanical energy exchanged 

between high-pressure and low-pressure streams (W ) will be considered as the real parameter.  

There will not be any integer parameter for this model.  To solve the model, additional inputs are 

required according to the degree of freedom of the system.  For this model, one of the outlet 

pressures is the additional information that needs to be provided by the user.  Using the outlet 

pressure, W  will be calculated by the system as discussed in section 5.2.1.  The screenshots of the 

Excel model are highlighted in Fig. 5.3. 

 Revising the user subroutine.  The unit operation model subroutine should be customized 

to pass the input data such as feed streams from the Aspen Plus to Excel and pass the calculated 

output data from the Excel to Aspen Plus.  Similar to the Excel model, a template code for the 

User 2 model is available in the Aspen Plus library to be modified for our model.  The User 2 user 

subroutine which has been analyzed and shown in Aspen Plus User Models and Getting Started 

Customizing Unit Operation Models (2012, 2013) will not be discussed in detail here as the 

changes are minor.  Appendix C contains the customized User 2 unit operation model subroutine 

for Excel models from Aspen Plus Getting Started Customizing Unit Operation Models (2013) for 

the work exchanger model. 
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Figure 5.3.  Summary of the Excel model set up. 

 The next steps include compiling and linking the subroutine to Aspen Plus, creating a 

shared library for the model, customizing the Aspen Plus model library, and editing the custom 

model schematic based on the work exchanger (Aspen Technology Inc., 2013).  These steps will 

be similar for all models so we will not discuss them here.   

5.2.3 Simulation Results 

  The simulation has been run using Aspen Plus V8.4, Visual Studio 2015, and Microsoft 

Excel 2013 in a computer operating with Microsoft Windows 7.  At this stage, as long as the work 

exchanger model library is available in the Aspen Plus working folder, we will be able to add the 

work exchanger unit from the unit operations palette.   

One of them is defined 

by user.

One of them is calculated 

using Table 2.1.

=calculated W(HP) or 

W(LP) from sheet1

Entered by user 

in Aspen Plus

Defined by 

Aspen Plus

Eq. (5.2)
Eq. (5.1)

Eq. (5.4)
Eq. (5.3)

Eq. (5.7) Eq. (5.7)
Eq. (5.5) Eq. (5.6)

Defined by Aspen 

Plus
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Figure 5.4.  Work exchanger unit in the Aspen Plus environment. 

 Case 1.  For a case study of a high-pressure stream that enters the work exchanger at 2,000 

kPa and 525 k with a molar flowrate of 23.19 mol/s with ammonia as the only component, and a 

low-pressure stream that enters the unit at 220 kPa and 330 k with a molar flowrate of 82.54 mol/s 

and ammonia as the component, the objective is to depressurize the high-pressure stream to 150 

kPa.  The case study is under the isothermal condition, with the ideal gas assumption and 

considering 100% efficiency of the unit.  The property method is Peng-Robinson.  Figure 5.5 

shows the inlet information for the streams and the specified outlet for the high-pressure stream in 

Aspen Plus.   

 

LPIN

LPOUT

HPIN

HPOUT

WE
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Figure 5.5.  Inlet data required to run the simulation. 

 The simulation will be run and the outlet stream specification will be calculated by passing 

the inlet data from Aspen Plus to Excel for calculation through the FORTRAN user subroutine and 

the results will be passed back to Aspen Plus.  Figure 5.6 shows the outlet stream’s data and the 

amount of work that will be exchanged through the work exchanger.  
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Figure 5.6.  Final streams and unit capacity results for Case 1. 

 Case 2.  To show the feasibility of simulating the customized work exchanger model with 

other unit operations, we have simulated the case study 1 from Chapter 3 (Liu et al., 2014).  The 

same assumptions have been made through the simulation except there will be temperature change 

for the streams passing through the external compressors and expanders since these unit operations 

can be only simulated in Aspen Plus under non-isothermal conditions.  Figure 5.7 represents the 

work exchange network designed in Chapter 3 (Figure 3.3a).  We refer to section 3.2.2 for details 

on network design derivation.  
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Figure 5.7.  Simulated work exchanger network in Aspen Plus for Case 2. 

 The simulation of the work exchanger through Aspen Plus has been completed 

successfully.  However, the simulation is under the steady-state condition and most importantly, 

will not reflect the dynamic performance of valves and piston.  This motivated us to continue our 

investigation in the following section. 

5.3 CFD-based Modeling and Simulation of Piston-type Direct Work Exchanger 

 Computational Fluid Dynamics (CFD) modeling of units helps to have a better 

understanding of the device performance.  In this section, we present our investigation of the 

feasibility and design of a piston-type WE that works for processing gas-phase streams.  Our main 

approach is to use a Computational Fluid Dynamics (CFD) technique to construct a WE model.   
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5.3.1 Challenges and Opportunities 

 There has not been any study to model or simulate the piston-type work exchanger.  

However, there are a lot of studies on modeling of units where their performance can inspire the 

modeling of the piston-type work exchanger.  Conventional internal combustion (IC) engines have 

been studied and optimized through experiment and CFD modeling for years.  Piston-type work 

exchangers can be compared with IC engines in terms of the cylinder chamber which contains a 

piston, and opening and closing of the valves through each stroke.  However, in conventional IC 

engines, the piston movement will be controlled by the crank mechanism and the valves opening 

and closing will be controlled and modeled based on the crank angle (Heywood, 1988, Reitz and 

Rutland, 1995, ANSYS Inc., 2017).  Free piston engines are another type of engine which has been 

investigated as an alternative to conventional engines.  In a free piston engine, the piston motion 

will not be restricted by the position of rotating the crankshaft and will be defined by the interaction 

of gas and load forces.  Variable stroke length, active control of piston positon, reduction in friction 

loss, and the compression ratio impact are some of the main device characteristics.  Based on the 

structure of the piston cylinders and load forces, these engines are divided into four categories; as 

an example, a schematic of dual free piston engine is shown in Fig. 5.8 (Mikalsen and Roskilly, 

2007).   
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Figure 5.8.  Single piston hydraulic free-piston engine (Mikalsen and Roskilly, 2009). 

 Mikalsen and Roskilly (2009) presented a novel approach for modeling of a spark ignited 

free-piston engine and introduced a solution-dependent mesh motion using the open source CFD 

software OpenFoam.  Some operation variables such as piston position, ignition timing, 

compression ratio, fuel efficiency, and also the combustion process were studied (Mikalsen and 

Roskilly, 2008, Mikalsen and Roskilly, 2009).  Mao et al. (2011) worked on CFD modeling of the 

scavenging process of a free-piston linear alternator using a time-based numerical simulation 

program built with Matlab and the dynamic mesh tool AVL_FIRE.  They used different operating 

options to find the best combination for high scavenging.   

 Rotary energy recovery device or rotary pressure exchanger which is another type of 

energy recovery device used in seawater reverse osmosis has been modeled using CFD.  In this 

device which contains a rotor, several circular ducts, a sleeve, and two end covers, the energy will 

be exchanged between high-pressure and low-pressure streams by the rotation of the rotor.  Yihui 

et al. (2011) developed a 3D model to study the mixing rate and its relation to parameters such as 

rotor speed and inlet flow velocity, and leakage with pressure and clearance volume.  In two other 

studies, Xu et al. (2016) optimized the rotor speed and improved the frictional state of the rotor 

through CFD modeling and validated the results of the experiment.  Lack of studies on CFD 
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modeling of the piston-type work exchangers dealing with a liquid phase as the working fluid can 

be defined as a result of simple design and satisfactory performance of the device in desalination 

processes; thus, any investigation into different parameters which impact its performance would 

not sound necessary.  However, proposing this device to be used in different chemical processes 

and dealing with gas phase stream, makes the design more complicated.   

 Our main objective is to investigate the feasibility of using a piston-type work exchanger 

for different types of chemical processes, therefore, there could be situations where there will be a 

gas phase stream as the working fluid on both sides of the piston, or a gas phase on one side and 

liquid phase stream on the other.  The possibility of the working fluid phase change as a result of 

pressure and temperature change during the pressurization or depressurization should be 

considered as well.  Dealing with different types of materials with various compositions that could 

be flammable is another issue that needs to be addressed.  Challenges regarding the displacement 

nature of the unit, accurate control of piston motion, the existence of fluid leakage paths, the 

possibility of mixing of fluids, and the coexistence of working fluid and lubricant are some other 

main obstacles that should be dealt with.  Dividing the displacement vessel into two piston 

cylinders similar to the free-piston engine structure could be one solution to fix the problem of 

mixing and leakage.  However, this makes the structure of the WE unit different and it may impact 

the working procedures.  Also, the control of piston motion will be still an issue as for free-piston 

engines.  Design of devices which only deal with gas or liquid phase streams, preventing 

flammable components from being pressurized or depressurized through WE, and characterizing 

the WE device for only a specific operating condition can be also considered as some alternative 

solutions.  However, these will limit the application of the device in chemical processes and may 

not be beneficial.  
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 From the simulation point of view, we will also deal with some challenges.  How to design 

the opening and closing of the valves, especially the control valves as described in Fig. 5.1, how 

to model the piston movement and most importantly how to model the piston moving back and 

forth, and identifying two different working fluids on each side of the piston are some examples.  

In the following, our preliminary investigations into CFD modeling of a piston-type WE including 

one displacement vessel are discussed.   

5.3.2 Piston-Type Work Exchanger Configuration 

 Cheng et al. (1967) presented the design for a piston-type work exchanger for energy 

recovery in desalination processes.  The design includes two displacement vessels, four check 

valves, and two control valves.  In our simulation, we have focused on the performance of one 

displacement vessel with the goal of investigating the movement of the piston, valve positions and 

full cycle time for pressurization and depressurization steps.  The design includes an approximately 

3 Liter (one gallon) piston cylinder for which the piston is 10% of the total volume of the cylinder.  

To be able to appropriately model the valves using CFD software and to avoid a complicated 

model, we have assumed that all the valves through which high-pressure and low-pressure streams 

flow in and out, are check valves.  Therefore, there will be four check valves (v1, v2, v3, and v4) 

which will be moved to the open or closed position due to the pressure difference between two 

sides of the valve. 
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Figure 5.9.  Piston-type work exchanger geometry model. 

 While the piston is at the left side of the cylinder and the HP side is filled with high-pressure 

stream at 
s

HP , the HP outlet valve (v4) will be opened and the high-pressure stream will flow out 

of the cylinder, and this will cause the pressure on the HP side to decrease.  When the pressure of 

the HP side reaches a pressure lower than the inlet pressure of the low-pressure stream, the low-

pressure stream will flow through valve v1 into the LP side of the cylinder and due to the pressure 

difference between two sides of the piston, the piston moves from left to right.  Similar to top and 

bottom dead centers in engines, the piston will not completely move to the end of the cylinder at 

each stroke and there will be 0.1 m distance between the piston position and the end of the cylinder.  

During the next stroke, while the LP side is filled with the low-pressure stream at 
s

LP , the HP inlet 

valve (v3) will be opened and high-pressure stream will flow into the HP side of the cylinder, and 

again the piston will start moving due to pressure difference between the two sides of the piston 

which will cause the low-pressure stream to be pressurized.  The compressed low-pressure stream 

will flow out through valve v2. 

5.3.3 Modeling Piston Dynamics 

 Piston motion is one of the main challenges in the CFD modeling stage.  In Fig. 5.10, the 

balance of forces on the piston is shown.  The piston moves because of the pressure difference 
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between the high-pressure and low-pressure streams on the two sides and will stop while it reaches 

the equilibrium.  However, to design the cylinder, the clearance volume should be also considered.  

This means that the piston can be only displaced to a certain location of the cylinder. 

 

Figure 5.10.  The balance of forces on the piston. 

 For a piston with given mass  pm , based on Newton's second law, we will have: 

 
P fv F - Fp

d
m

dt
   (5.7) 

where v  is the velocity of the piston motion, and t  is the time interval.  pF  is a force that results 

from the fluid pressure difference on two sides of the piston as shown in Eq. 5.8. 

 PF = Ap   (5.8) 

where p  results from the aerodynamic force due to gas pressure including high-pressure and low-

pressure working fluids on the surface of the piston  A .  According to Lyubarskyy and Bartel 

(2016), the friction force can be formulated similarly to the friction force between the piston ring 

and cylinder in a diesel engine. 

 
h c

f f f
F =F +F  (5.9) 

 fF 

HP stream 
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LP stream 

pressure
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where 
hf

F consists of the hydrodynamic friction force calculated from the shear stress (
hf

F Aw 

), and 
cf

F is the boundary friction force on the solid body contacts which is the result of asperity 

average contact pressure ( c
p ) on the contact surface ( cA ) and is equal to

c
cf

F Ac cf p   .  cf  is 

the boundary friction coefficient.  As the final step, the velocity over time can be written as Eq. 

5.10: 

 new oldv vv

step

d

dt t


  (5.10) 

Then, 

 new oldp p

new

d -d
v =

stept
 (5.11) 

where pd is the position of the piston at each step.  This allows us to estimate the location of the 

piston after each time interval as shown in Eq. 5.12. 

  
new old

2
P f

oldp p

F +F
d = × +v × +dstep step

p

t t
m

 (5.12) 

5.3.4 Simulation System Setup 

 The simulation is performed using the commercial CFD software Fluent 18.2.  The 

geometry is generated by preprocessor ANSYS Workbench Design Modeler 18.2.  The cylinder 

volume is 3.2 L for which the piston comprises 10% of the total volume.  The model geometry is 

shown in Fig. 5.9.  A fine hexahedral mesh is generated with 1,822 total elements in the 

preprocessor ANSYS Workbench Meshing 18.2.  A transient pressure-based solver is chosen to 

solve the governing equations.  Gravitational acceleration has not been considered in the 

simulation.  The PISO pressure-velocity coupling algorithm, PRESTO! pressure, second order 

upwind momentum discretization scheme for momentum and energy, and first order upwind 
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discretization scheme for turbulent kinetic energy and dissipation rate are chosen in the modeling 

(Ansys Inc. Fluent User’s Guide, 2017).  The basic model equations can be written as follows.  

The continuity equation for incompressible fluid is formulated as: 

  . 0
t





 


 (5.13) 

where   is the velocity vector and   is the density. 

 The momentum equation is described as: 

      . .p
t
  


   


 (5.14) 

where p is the static pressure, and   is the stress tensor which can be expressed as: 

 
T

      
  

 (5.15) 

where   is the molecular viscosity.  The flow calculation is modeled using the standard k-ε 

turbulence model.  This model is common for industrial flow simulation due to its accuracy and 

robustness.  The transport equations for the turbulence kinetic energy ( κ ), and the rate of 

dissipation ( ε ) are formulated in Eqs. 5.16 and 5.17. 

    
     

       
     

t
i M

i i i

u G Y
t x x x





 
   


 (5.16) 

where iu is the time mean velocity, G  is the generation of turbulence kinetic energy due to the 

mean velocity gradients, and MY  is the contribution of the fluctuating dilatation in compressible 

turbulence to the overall dissipation rate and should be taken into consideration when the ideal gas 

law is considered.    is the model constant and has the default value of 1.0  (Ansys Inc. 

Fluent Theory Guide, 2017). 
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where  , 1C  , and 2C   are also model constants with default values of 1.3 , 1 1.44C  , and 

2 1.92C   (Ansys Inc. Fluent Theory Guide, 2017).  The t  from Eqs. 5.16 and 5.17 is the 

turbulent viscosity which can be calculated as: 

 

2

t C


 


  (5.18) 

where constant C  is equal to 0.09. 

 The boundary conditions are all pressure-based for both high-pressure and low-pressure 

inlets and outlets.  Air in the ideal gas condition has been used as the working fluid of the HP and 

LP sides.  To model the valve and piston motion, dynamic mesh has been enabled with smoothing 

mesh methods.  The valves and piston are defined as rigid bodies and modeled with the 6DOF 

solver.  This solver uses external forces and moments such as aerodynamic and gravitational forces 

and moments on the rigid body objects to calculate the angular or translational motion of the center 

of gravity of the object.  In this modeling, the normal force due to the pressure of the working fluid 

(gas) on the rigid body is the aerodynamic force and will cause translational motion of the objects 

including the valves and piston.  In piston-type work exchanger, the piston only moves along one 

axis; thus, its motion is formulated using one DOF translation in the x axis based on the model 

geometry.  The governing equation for piston translation motion has been discussed in section 

5.3.3 through Eqs. 5.7- 5.12.  However, for the initial modeling the effect of friction force is 

disregarded and only the aerodynamic force due to gas pressure including the high-pressure and 

low-pressure working fluids on the surface of the piston  A  will define the motion of the piston.  
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The position of the piston will be also restricted by assigning constraints on the piston position.  

Therefore, the piston will be stopped at 0.1 m distance to the right/left end of the piston.   

 At this stage of the modeling, we have assumed that there will be no energy loss through 

the energy exchanger (work exchange) between the high-pressure and low-pressure fluids.  This 

means that while the fluid on one side of the piston pushes the piston and does work on it, the same 

amount of work will be done on the fluid on the other side by the piston.  According to this 

assumption and considering the adiabatic condition for expansion and compression, we can write 

the following equation to present the pressure and volume relationship. 

 
mPV constant  (5.19) 

where m  is the adiabatic ratio.  Therefore, the work done by the fluid on the piston or the work 

the piston does on the fluid, will be calculated as follows: 

 
2

1

V

V

W = F l

= P A l = PdV



  
 (5.20) 

where F  represents the force on the piston, P is the pressure of the fluid, A is the cross sectional 

area of the piston, and l  defines the distance the piston moves inside the cylinder.  Therefore, A l  

will be equal to the swept volume of the piston.  Using Eq. 5.19, the integration derived in Eq. 5.20 

can be calculated considering the initial condition and final volume. 

 The motion for the check valves will be computed using the one DOF translation in the x 

axis while Hooke's Law with a spring constant of 2700 N/m will apply force to the valve’s center 

of gravity.  Figure 5.11 shows a schematic of an inlet check valve with one DOF translation taken 

from the Ansys Fluent Theory Guide (2017).   
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Figure 5.11.  An inlet check valve with one DOF translation (Ansys Inc. Fluent Theory Guide, 

2017). 

5.3.5 Analysis of Direct Piston-type Work Exchanger Full Cycle  

 The simulation is completed using the modeling assumptions and simulation scheme 

discussed earlier.  The main objective is to investigate the performance of a piston-type work 

exchanger including one piston cylinder through one full cycle.  This will help us to have a better 

understanding of the system dynamics, cycle time, and depressurization and pressurization stages.   

 The full cycle of energy recovery through a work exchanger for a unit with one vessel 

(piston cylinder) which was described earlier (Fig. 2.2) includes four main stages.  These stages 

have been simulated for a case study in which a high-pressure stream enters the unit at 900 kPa 

and 656 K and needs to be depressurized to 100 kPa, and a low-pressure stream enters the unit at 

170 kPa and 260 K and should be pressurized to 700 kPa.  As mentioned, ideal gas air has been 

assumed as the working fluid for both streams.  The simulation is completed in two main steps 

which are stages I-II (high-pressure stream depressurization and low-pressure stream 

displacement), and stages III-IV (low-pressure stream pressurization and high-pressure stream 

displacement).  Later, these two steps will be combined to analyze the full cycle of energy recovery 

during the two strokes.   

 Step 1- High-pressure stream depressurization and low-pressure stream 

displacement (Stages I-II).  Initially, while the piston is at the left side of the cylinder, the HP 

flow 

direction

spring

translation direction

one DOF zone
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side is filled with the high-pressure stream at 900 kPa and 656 K (t=0 seconds).  The valve v4 will 

be activated in the simulation (opened) and the high-pressure stream will flow out.  This will 

continue till the HP side pressure drops to a target outlet pressure lower than the low-pressure 

stream inlet pressure.  At around 0.055 seconds, the pressure reaches about 100 kPa.  At 0.057 

seconds, the low-pressure stream flows into the LP side of the piston at 170 kPa and 260 K through 

valve v1.  The pressure difference between the two sides of the piston will cause the movement of 

the piston from the right to the left side while the high-pressure stream is still flowing out of the 

cylinder through valve v4.  The movement of the piston and displacement of the low-pressure 

stream counted as stage II takes about 0.05 seconds.  Figure 5.12 summarizes the pressure contours 

for step 1 including stages I and II.   

 Step 2- Low-pressure stream pressurization and high-pressure stream displacement 

(Stages III-IV).  While the piston is at the right side of the cylinder and the LP side is filled with 

low-pressure stream at 170 kPa, the valve v3 will be activated in the simulation (opened) and the 

high-pressure stream will flow in at 900 kPa.  Due to the pressure difference between the two sides 

of the piston, the piston will move from the right to the left and the LP side content will be 

compressed.  At about 0.0057 seconds, the valve v2 is activated (opened) and the pressurized low-

pressure stream flows out through valve v2.  The movement of the piston and displacement of the 

high-pressure stream counted as stage IV takes about 0.009 seconds.  Figure 5.13 summarizes the 

pressure contours for step 2 including stages III and IV.  Note that, according to the calculation of 

the work that the piston does on the air in the LP side, if the piston moves from the end right to the 

end left side (considering clearance volume), the outlet pressure of the low-pressure stream will 

be higher than the target assigned.  For this reason, the piston should be stopped at 0.152 m distance 
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from the end of the cylinder instead of 0.1 m so the low-pressure stream will not reach a higher 

pressure than the target pressure. 

 Full cycle.  To analyze one complete cycle of energy recovery using the work exchanger, 

we have combined the simulation results of the two steps which include stages I-II and III-IV.  

Using this information, for our case study, the full cycle takes about 0.124 seconds.  This time 

duration could be significantly different case by case as operating conditions play a key role in 

defining the cycle time.  For instance, piston movement in stage IV takes only about 0.009 seconds 

which is lower compared to stage II in which the piston motion takes 0.05 seconds.  In fact, the 

different pressure differences between the high-pressure and low-pressure streams of the two sides 

of the piston, 70 kPa for stage II and 730 kPa for stage IV, will result in different velocities for the 

piston movement.  Note that in stage IV, the piston has been stopped before reaching the end of 

the cylinder to meet the target pressure of the low-pressure stream.  However, continuing the 

simulation in stage IV until the piston reaches the same position as in stage II, the time only 

increases to 0.011 seconds which is still about one fifth of the time duration for piston motion in 

stage II.  The impact of the operating conditions on piston movement and its speed of movement 

has been analyzed in section 5.3.6.   

 Figure 5.14 summarizes the pressure profile for both the high-pressure and low-pressure 

streams at the HP and LP sides.  The piston position through the full cycle is shown in Fig. 5.15 

and the check valve positions considering 0 for each valve being closed and 1 being open are 

plotted in Figs. 5.16-5-19. 
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Figure 5.12.  Contours of pressure variation during stages I-II. 
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Figure 5.13.  Contours of pressure variation during stages III-IV. 
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Figure 5.14.  Pressure change profile for HP and LP streams in full cycle (Stages I-IV). 

Figure 5.15.  Piston position in a full cycle (Stages I-IV). 
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Figure 5.16.  Valve no. 1 (inlet low-pressure stream) position during the full cycle (Stages I-IV). 

Figure 5.17.  Valve no. 2 (outlet low-pressure stream) position during the full cycle (Stages I-

IV). 
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Figure 5.18.  Valve no. 3 (inlet high-pressure stream) position during the full cycle (Stages I-IV). 

Figure 5.19.  Valve no. 4 (outlet high-pressure stream) position during the full cycle (stages I-

IV). 
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5.3.6 Piston Movement under Different Operating Conditions 

  To study the effect of operating conditions on the cycle time, we have mainly focused on 

the piston motion performance.  The pressure and temperature can be defined as the main 

parameters which impact the amount of work that the piston does on the fluid, the target pressures, 

and how fast the piston moves from one side to the other.  Piston motion can be considered as one 

of the most important challenges manufacturers may have while dealing with work exchangers 

operated by gas phase streams.  In fact, the safety of the unit, dynamic performance of the unit, 

and its efficiency for feasible transfer of energy are all related to the motion of the piston.   

 CFX from Ansys Workbench allows us to analyze the performance of the rigid body under 

different operating conditions.  For this reason, we have studied the piston motion under the same 

modeling formulation with Ansys Workbench CFX 18.2.  For a minimum pressure difference of 

70 kPa (the amount required for the piston movement according to the thermodynamic feasibility 

condition of mechanical energy transfer), we have conducted the simulation for different pressure 

differences of working fluids between the two sides of the piston.  Figure 5.20 shows the amount 

of time it takes the piston to be moved from the right to the left side (considering clearance volume) 

while the pressure difference between the high-pressure and low pressure streams are different 

ratios of the minimum pressure difference such as 1∆P, 2∆P, 4∆P, 8∆P, and 28∆P kPa.  Dealing 

with different cycle times, un-steady flow in and out of the unit, and unsafe movement of the piston 

due to high pressure differences are some of the issues that we are able to address after completing 

this simulation. 
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Figure 5.20.  Piston position vs. time under different operating pressures. 
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Figure 5.21.  Piston position vs. time under different operating temperatures. 
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Figure 5.22.  The compression ratio of the low-pressure stream for a maximum displacement of 

the piston. 

5.4 Summary 
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low as 0.124 seconds which has a significant difference with the 10-15 seconds cycle time reported 

initially for the device in desalination processes.  However, the simulation is still in the preliminary 

stages and it can be improved in many different aspects.  Accurate design of the valves dealing 

with different fluid domains at each side of the piston, the possibility of fluids phase change 

through the process, friction loss due to movement of the piston, and controlling the piston motion 

are some of the main future challenges that need to be addressed.  
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CHAPTER 6 DATA-DRIVEN MODELING AND ANALYSIS OF ENERGY 

EFFICIENCY OF GEOGRAPHICALLY DISTRIBUTED MANUFACTURING 

 Thermal energy defined as process heating and mechanical energy defined as machine 

drive systems are categorized as the direct process energy systems in manufacturing sectors.  They 

consume about 9,216 TBtu energy (48% of the total manufacturing energy consumption), out of 

which about 3,874 TBtu will be lost which is counted as 42% of the amount that has been 

consumed (U.S. DOE, 2018).   

 Over the past decades, energy efficiency in industries has been significantly and 

continuously improved.  However, further efforts on energy efficiency improvement are needed, 

which requires to overcome a number of barriers, such as a lack of private-sector investment for 

technology deployment, a low turnover rate of energy system’s capital-intensive infrastructure, 

and resource-supply challenges in technology deployment (NETL, 2009).  Technically, 

manufacturing sectors in different geographical regions should responsively and systematically 

conduct more in-depth analysis of energy consumption, energy loss, and CO2 emission.  Energy 

Flow Analysis (EFA) is an effective tool for understanding energy consumption in industrial 

organizations (Chen and Chen, 2015), energy source distribution among manufacturing sectors 

(LLNL, 2018), and fuel types used by sectors (Decker et al., 2000).  The Input-Output Analysis 

(IOA) has been widely adopted as a tool to assess resource and environmental impact embodied 

in goods and service trade (Leontief, 1951, Chapman, 1974, Gay et al., 1993).  Energy 

consumption, land use, CO2 emission, and material consumption are some examples of the 

indicators used in those studies.  The IOA can be applied to the study of individual or multiple 

regions (Lenzen, 1998, Wiedmann et al., 2007).  Based on the IOA, the Ecological Network 

Analysis (ENA) was also introduced to study energy/material flows in ecosystems (Hannon, 

1973).  From a different perspective, the Data Envelope Analysis (DEA), a mathematical 
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programming method, has been employed to assess energy efficiency of a wide range of sectors, 

such as manufacturing sectors (Charnes et al., 1978, Ray, 2004).  In the Mukherjee (2008) study, 

energy conservation, cost minimization, and capacity output were chosen as the objectives, and 

the performance of manufacturing sectors was analyzed for different time periods.  Needless to 

say, data availability and data quality are key to industrial applications. 

 The U.S. Department of Energy (DOE) has published and continuously updated reports 

about the U.S. energy consumption/loss and CO2 emission for manufacturing sectors (U.S. DOE, 

2009, 2012, 2018).  The reports contain the Energy Information Administration (EIA) data of 

primary energy use at the national level (U.S. EIA, 2010, 2014), and the information about onsite 

energy generation, direct energy use in process and non-process systems, and offsite energy use.  

The accessible information is for all manufacturing sectors (coded as NIACS 31-33), where the 

top 15 energy intensive manufacturing sectors are detailed, which consume 95% of the total energy 

used (U.S. DOE, 2018).  However, the methodology described in the reports is not directly for 

energy efficiency analysis in geographical regions, such as individual states or counties.   

 U.S. Census Bureau (USCS), on the other hand, provides a huge amount of data about the 

locations of manufacturing sectors and subsectors (listed in NIACS 31-33) as well as the dollar 

value of shipment of manufactured products; these represent key economic information about 

manufacturing activities.  However, the data collected by the USCS does not include any 

information about energy efficiency in manufacturing sectors.  Interestingly, the American Council 

for an Energy-Efficient Economy (ACEEE) studied the energy efficiency performance of all the 

states in the U.S. and ranked them (ACEEE, 2018).  This information is valuable for individual 

states to understand the challenges they are facing.   
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 The aim of this chapter is to investigate energy efficiency in manufacturing sectors in 

different geographical regions, such as states and counties.  In the following sections, we will first 

introduce a general data-driven modeling and analysis method to study energy consumption, 

energy loss, and CO2 emission in manufacturing regions.  The publically accessible data from the 

DOE, USCS, and ACEEE will be utilized to study energy consumption, energy loss, and CO2 

emission in different states and, as an example, the state of Michigan is chosen for more detailed 

study. 

6.1 Data-driven Energy Analysis Methodology 

 National data presentation.  As stated, the DOE reports contain three types of national 

data: energy consumption, energy loss, and CO2 emission in manufacturing sectors.  Figure 6.1 is 

an example showing the energy and carbon footprint for the chemical manufacturing sector in the 

U.S. in 2012 (U.S. DOE, 2012).  To facilitate energy efficiency analysis in manufacturing sections, 

we introduce a few matrices, which are described below. 

Energy consumption. Let  M NEC be an energy consumption matrix that contains the 

information about M types of energy systems defined by the DOE (e.g., process heating, process 

cooling, and onsite transportation) in N types of manufacturing sectors (e.g., chemical, alumina 

and aluminum, and fabricated metals).  The matrix has the following structure:   

 

1,1 1,2 1,N

2,1 2,2 2,N

M ,1 M ,2 M ,N

EC EC EC

EC EC EC

EC EC EC

 
 
 
 
 
 

EC , (6.1) 

where ,i jEC  is the amount of energy consumed by the i-th energy system in the j-th manufacturing 

sector.  The element data in matrix EC can be directly obtained from the DOE reports (U.S. DOE, 

2009, 2012, 2018).   
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 The types of energy systems may differ, depending on user’s interest.  It is possible that 

not every type of energy system is included in matrix EC due to data availability issue.  Therefore, 

in some cases, the summation of the element values in a column of matrix EC does not represent 

the total amount of energy consumed in a specific manufacturing sector.  For this reason, variable 

j  is introduced to represent the total energy consumption in each manufacturing sector in the 

reports describing the nation’s energy consumption.  Using this information, we can derive a 

percentage-based energy consumption matrix, named PEC , as follows: 

 

1,1 1,2 1,N

2 ,1 2 ,2 2 ,N

M ,1 M ,2 M ,N

P P P

P P P

P P P

EC EC EC

EC EC EC

EC EC EC

 
 
 

  
 
 
  

P
EC , (6.2) 

where element 
,i jP

EC  is the percentage of the energy consumed by the i-th energy system in the j-

th manufacturing sector, i.e., 

 
,

,

i j

i j

P
j

EC
EC


  (6.3) 

 Note that each element in matrix 
PEC  represents how energy consumption is distributed 

among the energy systems in a manufacturing sector.  The percentages are the average in the nation 

and can be reasonably considered constant in different geographical regions.   

 Energy loss estimation.  Let   M NEL be a matrix that contains the energy loss 

information about M types of energy systems in N types of manufacturing sectors.  The matrix has 

the following structure:   
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1,1 1,2 1,N

2,1 2,2 2,N

M ,1 M ,2 M ,N

EL EL EL

EL EL EL

EL EL EL

 
 
 
 
 
 

EL , (6.4) 

where element ,i jEL  is the amount of energy loss in the i-th energy system of the j-th 

manufacturing sector. 

 Note that the ratio of ,i jEL  and ,i jEC  is the energy loss percentage of the i-th energy system 

in the j-th manufacturing sector.  The following matrix is named the energy loss percentage matrix:   

 

1,1 1,2 1,N

2 ,1 2 ,2 2 ,N

M ,1 M ,2 M ,N

P P P

P P P

P P P

EL EL EL

EL EL EL

EL EL EL

 
 
 

  
 
 
  

P
EL

, (6.5) 

where 

,

,

,


i j

i j

P
i j

EL
EL

EC . (6.6) 

 Carbon dioxide (CO2) emission.  Energy related CO2 emission data can be organized in a 

vector, named CE  1N  as follows: 

  
T

1 2 NCE CE CE CE , (6.7) 

where CEj is the amount of CO2 emission from the j-th manufacturing sector in the nation. 

 State-level energy analysis.  To derive state-level energy efficiency, the DOE’s national 

energy and carbon footprint maps and additional information are needed.  As stated, the USCS’ 

database contains rich information about the business performance of various manufacturing 

sectors in different regions of the country.  The data types include the number of manufacturing 

establishments, the total value of product shipments, the total capital expenditure, the total cost of 
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materials, the value added, and the total number of employees.  It is known that energy intensity 

is quantified by the energy consumption per economic factor.  The total value of shipments and 

services received (SSR) is defined as the dollar value of products sold by the manufacturing 

establishments and is based on net selling values, f.o.b. (free on board) plant, after excluding 

discounts and allowances (USCS Manufacturers Shipments, Inventories, and Orders, 2018).  

According to the Industrial Demand Module (IDM) of the National Energy Modeling System 

(NEMS), it demonstrates largely industrial economic activities, and energy consumption is a main 

factor of it  (U.S. EIA Industrial Demand Module, 2018).  The total value of SSR is also used in 

the Manufacturing Energy Consumption Survey (MECs) energy statistics (U.S. EIA MECS 

Industry Analysis, 2018).  Therefore, in this work, the total value of SSR is adopted as a 

measurement of manufacturing economic activities when estimating energy consumption in 

different geographical regions.   

 State-level energy consumption estimation.  Let’s introduce a vector, named B, to include 

the energy consumption data for all types of manufacturing sectors in a state.   

  
T

1 2 NB B B B , (6.8) 

where Bj is the energy consumption of the j-th manufacturing sector in the state.  This type of data 

is unavailable in the DOE reports.  However, it can be estimated using the information from the 

USCS as follows: 

 
j

j j

j

B


  
 ,  (6.9) 

where j  is the total energy consumption in the j-th manufacturing sector in the U.S., j and j  

are, respectively, the total value of SSR of the j-th manufacturing sector in one state and that in the 

nation.  
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Note that the total energy consumption by all N types of manufacturing sectors of a state 

can be simply calculated as follows:   

 

N
tot

j

j 1

B 


  (6.10) 

 In matrix 
PEC  shown in Eq 2, element 

,i jp
EC  is the percentage of the energy consumed 

by the i-th energy system in the j-th manufacturing sector.  Since jB  is the total energy consumed 

by the j-th manufacturing sector in the state, the energy consumption in each type of energy 

systems in a manufacturing sector in a state, designated as ,

s

i jEC , can be estimated as: 

 
,, i j

s

i j p jEC EC B   (6.11) 

Thus, for a state having N types of manufacturing sectors, matrix s
EC  is defined as follows,  

s s s

1,1 1,2 1,N

s s s

2,1 2,2 2,Ns

s s s

M ,1 M ,2 M ,N

EC EC EC

EC EC EC

EC EC EC

 
 
 
 
 
  

EC
, (6.12) 

 State-level energy loss estimation. Matrix PEL  in Eq 5 contains only national average 

energy loss information.  To estimate the state-level energy loss in manufacturing sectors in states, 

each state’s energy efficiency ranking identified by the American Council of an Energy Efficient 

Economy (ACEEE, 2018) can be used.  The ranking is simply a number between 1 and 51 for 50 

states plus a federal district (Washington, D.C.), with 1 the best, and 51 the worst in terms of 

energy efficiency.  Thus, 26 is the middle number in the ranking.  This ranking information allows 

us to differentiate energy loss in different states.  Here, we introduce a parameter for energy loss 

percentage correction as follows: 
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 

,

26
1

100

s

i j

R
  , (6.13) 

where Rs is the ranking number of that state.  The value of ,i j  is between 75% and 125%.  Thus, 

a state’s ranking number (Rs) less than 26 means better energy efficiency and less energy loss than 

at least 26 states.  Now let’s define a matrix, named s
EL , to quantify energy loss in different 

energy systems of those manufacturing sectors in a state as follows: 

 

s s s

1,1 1,2 1,N

s s s

2,1 2,2 2,Ns

s s s

M ,1 M ,2 M ,N

EL EL EL

EL EL EL

EL EL EL

 
 
 
 
 
  

EL

, (6.14) 

where 

 ,, , ,i j

s s

i j i j p i jEL EL EC  
. (6.15) 

 As shown, the energy loss percentage for a state is calculated through converting the 

national energy loss percentage (
,i jpEL ) using parameter ,i j .  This is possibly a best feasible way 

for adjustment based on the information available.  Note that if a state’s ranking number (Rs) is 

larger than 26, the adjusted energy loss percentage (
,, i ji j pEL  ) may be greater than 100%; in 

such a case (although very unlikely), the value of ,

s

i jEL  should be set to ,

s

i jEC .   

 Using the information contained in s
EL , we can readily calculate the total amount of 

energy loss of a specific manufacturing sector (
s

jEL , j = 1, 2, …, N) and that of all manufacturing 

sectors  in a state, s,totEL , i.e.,  

 ,

1

M
s s

j i j

i

EL EL


 . (6.16) 
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and 

 
,

1

N
s tot s

j

j

EL EL


 . (6.17)  

 State-level CO2 emission estimation.  The CO2 emission of individual manufacturing sector 

in a state (
s

iCE ) can be estimated as follows: 

 
js

j j

j

θ
CE CE

φ
   (6.18) 

where jCE  is the CO2 emission of the j-th manufacturing sector in the nation; j  and j  are, 

respectively, the total value of SSR of the j-th manufacturing sector in one state and that in the 

nation.  

 For a state having N manufacturing sectors, the CO2 estimation is included in vector s
CE : 

 
T

s s s s

1 2 NCE CE CE   CE , (6.19) 

 The sum of the element values in the above vector gives the estimation of the total energy-

related CO2 emission of all N manufacturing sectors in the state, i.e., 

 
N

s,tot s

j

j 1

CE CE


 . (6.20) 

 County-level energy analysis.  Estimation of energy consumption, energy loss and CO2 

emission at the county level can be performed using the state-level information.  

 County-level energy consumption estimation. Let’s introduce a matrix, named c
EC  that 

contains the energy consumption data in N types of manufacturing sectors in H counties of the 

selected state: 
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c c c

1,1 1,2 1,N

c c c

2,1 2,2 2,Nc

c c c

H ,1 H ,2 H ,N

EC EC EC

EC EC EC

EC EC EC

 
 
 
 
 
  

EC , (6.21) 

Where the element 
c

i , jEC  is the energy consumption in the j-th manufacturing sector in the i-th 

county.  This element can be estimated as: 

 
i , jc

i , j j

j

ω
EC B

θ
  ,  (6.22) 

where jB  is the energy consumption of the j-th manufacturing sector in the state; jθ  and ,i jω  are, 

respectively, the total value of SSR of j-th type of manufacturing sector in the state and that in the 

i-th county, which can be obtained from the USCS database.  

 Using the information contained in matrix c
EC , we can estimate each county’s total 

energy consumption of the manufacturing sectors as follows: 

 
N

c c

i i , j

j 1

EC EC


 . (6.23) 

 Note that the total energy consumption of the N manufacturing sectors in all H counties 

should be equal to the total energy consumption of the state. 

 County-based energy loss estimation.  The county-level energy loss in manufacturing 

sectors can be estimated based the state-level energy loss data.  Let’s define 
c

i , jEL  as the energy 

loss of the j-th type of manufacturing sector in the i-th county of the selected state.  Its value can 

be estimated as: 

 
i , jc s

i , j j

j

ω
EL EL

θ
  , (6.24) 

where 
s

jEL  is the energy loss of the j-th manufacturing sector in the state (see Eq. 6.16). 
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 The results obtained using Eq. 6.24, we can construct matrix c
EL  to include the energy 

loss of the manufacturing sectors in all individual counties in the state: 

 

c c c

1,1 1,2 1,N

c c c

2,1 2,2 2,Nc

c c c

H ,1 H ,2 H ,N

EL EL EL

EL EL EL

EL EL EL

 
 
 
 
 
  

EL , (6.25) 

 Note that the energy loss in all manufacturing sectors of a county, designated as 
c

iEL , is 

the sum of the element values in the i-th row of matrix c
EL , i.e., 

 
1

N
c c

i i , j

j

EL EL


 . (6.26) 

 County-level CO2 emission estimation.  The CO2 emission of a sector in a county under the 

selected state can be defined as:  

 
,

,

i jc s

i j j

j

ω
CE CE

θ
  . (6.27) 

where jθ  and ,i jω  are, respectively the total value of SSR of the j-th type of manufacturing sector 

in the state and that in the i-th county.   

 Thus, the CO2 emission information of all H counties in a state can be included in matrix 

c
CE  as follows: 

 

, , ,

, , ,

, , ,

c c c

1 1 1 2 1 N

c c c

2 1 2 2 2 Nc

c c c

H 1 H 2 H N

CE CE CE

CE CE CE

CE CE CE

 
 
 
 
 
  

CE , (6.28) 

 Note that the total CO2 emission of manufacturing sectors in an individual county is the 

sum of the element value of the corresponding row in matrix c
CE , i.e.,  
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 ,

N
c c

i i j

j 1

CE CE


 . (6.29) 

6.2 Case Study 

 Energy efficiency improvement in manufacturing sectors is a key approach for energy 

sustainability.  This requires a comprehensive energy efficiency analysis on energy consumption, 

energy loss, and carbon emission.  In this section, the developed methodology is used to examine 

energy-intensive manufacturing sectors and generate detailed information of energy consumption, 

energy loss, and CO2 emission at the national, state, and county levels.   

 Energy-intensive manufacturing sectors.  According to the DOE report (2018), there are 

15 manufacturing sectors consuming about 95% of the total energy among all the manufacturing 

sectors.  These include (1) the alumina and aluminum sector, (2) the cement sector, (3) the 

chemical sector, (4) the computers, electronics and electrical equipment sector, (5) the fabricated 

metals sector, (6) the food and beverage sector, (7) the forest product sector, (8) the foundry sector, 

(9) the glass sector, (10) the iron and steel sector, (11) the machinery sector, (12) the petroleum 

refining sector, (13) the plastics and rubber product sector, (14) the textile sector, and (15) the 

transportation equipment sector.  Each sector has a number of subsectors, according to North 

American Industry Classification System (NAICS). 

 Data source.  DOE releases the national energy and carbon footprint data regularly through 

its website based on the updated EIA Manufacturing Energy Consumption Survey (MECS) (2010, 

2014).  The latest accessible data is for 2014.  However, the latest information about the total 

values of shipment and service received (SSR) data for each manufacturing sector in the nation 

and individual states and counties reported in the economic activity survey by the U.S. Census 

Bureau is for 2012.  Therefore, to ensure data consistency in evaluation, we will use the DOE’s 

energy and carbon footprint data also for 2012 in the case study.  Note that the available data 
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reflects the adjusted energy use statistics from MECS, in collaboration with industrial experts, 

under a number of assumptions.  The reported footprint analysis provides detailed information 

about how in those sectors, the primary energy (including fuel, electricity, and steam supplied from 

offsite sources) was consumed (1) for offsite and onsite energy generation and (2) by onsite energy 

use in process and non-process systems.   

 Figure 6.1 is an example adopted from the DOE report (2012), which provides quantitative 

energy distribution data (energy consumption, energy loss, and CO2 emission) in the chemical 

manufacturing sector in the nation.  As shown, the process energy use is for process heating, 

process cooling and refrigeration, other process use, electro-chemical use, machine drive and 

machine driven system use (such as those by pumps, fans, compressed air, material handling and 

processing, and other systems), while the non-process energy use is for facility HVAC, lighting, 

other facility support, onsite transportation, and other non-process purposes (U.S. DOE, 2018).   
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Figure 6.1.  Chemical sector manufacturing energy and carbon footprint (U.S. DOE, 2012). 

 Results and discussions.  The case study aims at deriving answers to the following 

questions: how much did these sectors consume energy in different types of systems, how much 

energy was lost in the energy systems of these sectors, and what is the amount of energy-related 

CO2 emitted in these sectors?   

 It is known that in 2012, the total annual energy consumption in the manufacturing 

industries in the U.S. reached 21,972 TBtu (including 11,327 TBtu for process use and 1,647 TBtu 
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for non-process use; the rest for offsite and onsite generation).  Among this very high energy 

consumption, a total of 14,452 TBtu were lost, which counts for 65.7% of total energy 

consumption.  These include process energy loss of 4,807 TBtu (i.e., 42.4% of process energy 

consumption) and non-process energy loss of 647 TBtu (i.e., 39.3% of non-process energy 

consumption).  The reported total combustion emission reached 1,261 MMT CO2e (U.S. DOE, 

2012).   

 National energy data presentation.  The DOE’s national energy consumption and loss 

information is used to construct matrices EC and EL defined by Eqs. 6.1 and 6.4, respectively.  

These two matrices are used to derive, respectively, matrices 
PEC  and PEL  defined by Eqs. 6.2 

and 6.5; the element values are shown in Tables 6.1 and 6.2.  In this work, the detailed energy 

analysis is focused on the direct energy use in the manufacturing sectors, which includes process 

and non-process energy.  Similar to energy consumption, the CO2 emission data for each sector in 

the nation given in the DOE report (2012) is structured using Eq. 6.7. 
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 State-level energy analysis.  The detailed state-level energy consumption data can be 

estimated using Eqs. 6.8-6.12 and the information in Table 6.1.  In estimation, all 15 top energy-

intensive manufacturing sectors are counted, and for each sector, five types of energy systems for 

process use and five types of energy systems for non-process energy use in each sector are 

evaluated.  Note that according to the DOE’s report, the top 15 manufacturing sectors consumes 

95% of total energy use in the nation.  Thus, to calculate the total manufacturing energy 

consumption of each state using Eq. 6.10, the result is multiplied by a coefficient of 1.0526 to 

consider all the manufacturing sectors.  In this case study, the state of Michigan (MI) is selected 

as an example.   

 Energy consumption estimation.  Table 6.3 provides the following types of estimated 

values of all 15 manufacturing sectors: (1) the value of variable iγ  - the total energy consumption 

in each manufacturing sector in the nation (U.S. DOE, 2012); (2) the value of variable iφ  - the 

total value of SSR of each manufacturing sector in the U.S. (USCS, Table EC1200A1), (3) the 

value of variable iθ  - the total value of SSR of each manufacturing sector in the state (USCS, 

Table EC1231A1), and (4) the value of iB  - the energy consumption of each manufacturing sector 

in a state.  Note that the energy consumptions of the cement and the petroleum refining sectors are 

not available, because the total value of SSR of these two sectors is not reported by the U.S. Census 

Bureau database (USCS, Table EC1231A1).   

The detailed energy consumption in each type of energy system (such as process heating, 

process cooling, etc.) can be also calculated using Eqs. 6.11–6.12.  The estimation results are 

shown in Table 6.4.  For the same reason, the energy consumptions in the cement and the 

petroleum refining sectors are not shown.  On the other hand, in MI, the number of manufacturing 
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establishments and the production capacity of each are all relatively small (only 9 cement 

establishments and 3 petroleum refining establishments) (USCS, Table EC1231SA1).  As a result 

of the following calculation, the total manufacturing energy consumption in the state of MI in 2012 

would be 611.31 TBtu.   

 Using the same approach for the energy consumption estimation for MI, the energy 

consumption map for 50 states and one federal district is shown in Fig. 6.2, and the total 

manufacturing energy consumption would be 20,049 TBtu, which shows 8% difference as 

compared with the data from the averaged total annual energy consumption in the manufacturing 

industries in the U.S., where no specific information in each type of energy system of each 

manufacturing sector of each state is available (U.S. DOE, 2012).  This comparison supports the 

estimations under the assumptions by the introduced methodology. 
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Table 6.3.  Manufacturing-sector-based energy consumption and total value of shipment in the 

U.S. and State of MI in 2012 

Variable  
Alumina and 

Aluminum 
Cement Chemical 

Electronics and 

computer 

γ (TBtu) 603 471 4,513 527 

φ ($1,000) 37,652,496 5,894,830 785,299,730 437,205,393 

θ ($1,000) 1,176,722 N/A 16,352,747 7,966,689 

B (TBtu) 18.85 N/A 93.98 9.6 

Variable  Fabricated Metals Food and Beverage Forest Products Foundries 

γ (TBtu) 708 1,934 3,559 281 

φ ($1,000) 339,926,995 881,507,355 258,733,912 31,894,334 

θ ($1,000) 16,655,933.00 6,490,399 7,386,782 2,863,907 

B (TBtu) 34.69 14.24 101.61 25.23 

Variable  Glass Iron and Steel Machinery Petroleum Refining 

γ (TBtu) 466 1,481.00 444 3,546 

φ ($1,000) 28,080,825 138,505,940 402,177,024 801,904,517 

θ ($1,000) 1,806,216 6,490,399 20,440,978 N/A 

B (TBtu) 29.97 69.4 22.57 N/A 

Variable  Plastics Textiles Transportation Equipment 

γ (TBtu) 729 472 904 

φ ($1,000) 218,571,414 69,567,122 785,685,996 

θ ($1,000) 11,233,740 499,694 104,074,154 

B (TBtu) 37.47 3.39 119.75 
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 Energy loss estimation.  Energy loss calculation is completed using Table 6.2 data and Eqs. 

6.13-6.17.  According to ACEEE (2012), MI’s ranking on energy efficiency is 12 in the nation.  

This ranking number is the value of Rs in Eq. 6.13.  Table 6.5 shows the manufacturing-sector-

based energy loss percentage in MI in 2012, while Table 6.6 lists the detailed process and non-

process energy loss in different manufacturing sectors in MI, which is calculated using the data in 

Tables 6.2, 6.4, and 6.5 and Eqs. 6.14-6.15.  Comparison of the corresponding values in Table 6.2 

(for the U.S.) and Table 6.5 (for MI) shows MI’s energy loss in each manufacturing sector is 

clearly less than the national average.  The total amount of direct energy loss in MI’s 

manufacturing sector ( s,totEL ) is 132.06 TBtu, which includes the process energy loss of 108.42 

TBtu (i.e., 17.7% of the total energy consumption or 41.3% of the process energy consumption), 

and the non-process energy loss of 23.64 TBtu (i.e., 3.9% of the total energy consumption or 35.3% 

of the non-process energy consumption).  

 CO2 emission estimation.  The energy footprint analysis is completed by the analysis of 

energy-related CO2 emission of manufacturing sectors at the state level.  Using Eqs. 6.7 and 6.18-

6.20, the total energy-related CO2 emission for each sector in MI is estimated, and the same 

approach is used for estimation in other states.  The estimation results are plotted in Fig. 6.3.  The 

summarized estimation shows that in 2012, the total manufacturing combustion (energy-related 

CO2) emission of all 51 states was 1,134 MMT CO2e, which shows 10% difference as compared 

to the value from the national reported, which does not contain any state-based manufacturing 

sector specific information on CO2 emission (U.S. DOE, 2012).  Thus, the estimation by the 

introduced methodology is quite satisfactory.   
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 County-level energy analysis.  Sector-based energy consumption at the county level can 

be estimated using Eqs. 6.21-6.22, and the total energy consumption of all manufacturing sectors 

in a county using Eq. 6.23 (see Fig. 6.4).  In this case study, as we have selected the state of 

Michigan (MI) at the state level estimation, the counties of MI are used in our calculation.  The 

state has 83 counties.  The sector-based direct energy loss of each county is calculated using Eqs. 

6.24-6.26.  In Michigan, the three most energy-intensive counties are Wayne County, Oakland 

County, and Macomb County, and the numbers of manufacturing establishments in these counties 

are 1,483, 1,669, and 1,593, respectively (USCS, Table EC1231SA1).  Table 6.7 shows the total 

values of SSR of the eight main manufacturing sectors in these counties (USCS, Table 

EC1231A1), while Table 6.8 gives the estimated energy consumption and direct energy loss of 

each of the eight manufacturing sectors in these counties.  The CO2 emission estimations for the 

state as well as the eight manufacturing sectors of the three countries are shown in Table 6.9.  The 

total manufacturing energy consumption, energy loss, and energy-related CO2 emission of the 

three counties are shown in Fig. 6.5.  Note that the same approach was used to generate estimations 

of energy consumption and energy loss in seven other manufacturing sectors; the estimation result 

is omitted here.   
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Table 6.7.  Total value of shipment for manufacturing sectors in three energy intensive counties 

in MI 

Region  

Chemical 
Electronics and 

Computer 
Fabricated Metals 

Food and 

Beverage 

Total Value of 

shipment- ω 

($1000) 

Total Value of 

shipment- ω 

($1000) 

Total Value of 

shipment- ω 

($1000) 

Total Value of 

shipment- ω 

($1000) 

 Wayne  1,907,458 1,099,542 2,077,699 859,989 

Oakland  1,219,885 1,045,018 2,138,317 N/A 

Macomb  760,934 277,267 2,398,485 92,176 

Region  

Forest Products Machinery Plastics 
Transportation 

Equipment 

Total Value of 

shipment- ω 

($1000) 

Total Value of 

shipment- ω 

($1000) 

Total Value of 

shipment- ω 

($1000) 

Total Value of 

shipment- ω 

($1000) 

Wayne  441,938 3,282,221 861,696 34,981,849 

Oakland  89,144 3,992,381 846,207 6,693,498 

Macomb  56,699 2,630,031 996,818 18,696,841 

 

 

Figure 6.4.  Manufacturing energy consumption in counties of Michigan. 

Manufacturing Energy Consumption

0-1 TBtu

1-6 TBtu

6-15 TBtu

45-100 TBtu

>=100 TBtu
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Table 6.8.  Manufacturing-sector-based energy consumption and direct loss in three energy 

intensive counties in MI 

Region 
Chemical Electronics and Computer 

ECC (TBtu) ELC (TBtu) ECC (TBtu) ELC (TBtu) 

Wayne 10.96 1.88 1.33 0.19 

Oakland 7.01 1.2 1.26 0.19 

Macomb 4.37 0.75 0.33 0.05 

Region 
Fabricated Metals Food and Beverage 

ECC (TBtu) ELC (TBtu) ECC (TBtu) ELC (TBtu) 

Wayne 4.33 0.86 1.89 0.49 

Oakland 4.45 0.89 N/A N/A 

Macomb 5 1 0.2 0.05 

Region 
Forest Products Machinery 

ECC (TBtu) ELC (TBtu) ECC (TBtu) ELC (TBtu) 

Wayne 6.08 1.66 3.62 0.63 

Oakland 1.23 0.33 4.41 0.77 

Macomb 0.78 0.21 2.9 0.51 

Region 
Plastics Transportation Equipment 

ECC (TBtu) ELC (TBtu) ECC (TBtu) ELC (TBtu) 

Wayne 2.87 0.43 40.25 7.12 

Oakland 2.82 0.42 7.7 1.36 

Macomb 3.32 0.49 21.51 3.81 

Table 6.9.  Carbon dioxide emission of MI and three counties with respect to manufacturing 

sectors 

Sector/Region 
Michigan 

(MMT) 

Wayne 

(MMT) 

Oakland 

(MMT) 

Macomb 

(MMT) 

Chemical 5.73 0.67 0.43 0.27 

Electronics and 

Computer 
0.56 0.08 0.07 0.02 

Fabricated Metals 2.01 0.25 0.26 0.29 

Food and Beverage 0.86 0.11 0 0.01 

Forest Products 4 0.24 0.05 0.03 

Machinery 1.32 0.21 0.26 0.17 

Plastics 2.26 0.17 0.17 0.2 

Transportation 

Equipment 
7.02 2.36 0.45 1.26 

Total 32.67 7.74 2.52 3.69 
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Figure 6.5.  Energy consumption, energy loss, and carbon dioxide emission of three energy 

intensive counties in MI. 

6.3 Summary 

 Energy efficiency in the manufacturing industry is continuously one of the most critical 

factor in energy sustainability and thus the nation’s economic, environmental, and social 

sustainability.  A variety of energy and related CO2 emission information and data are openly 

accessible, which were generated with possibly different purposes, under different assumptions, 

focusing on different time periods, and by different organizations.  Integrated use of the accessible 

information could generate very valuable information on energy and CO2 footprint in the 

geographical regions of interest.   

 In this chapter, we have introduced a simple, general energy efficiency and CO2 emission 

analysis method for energy use performance estimation in manufacturing industries in different 

Oakland County

Wayne 

County

Detroit

Note:

ECc =Manufacturing Energy Consumption (TBtu)

ELc =Manufacturing Energy Loss-Direct use(TBtu)

CEc =Manufacturing Energy-Related CO2 Emission (MMT)

ESTAB= No. of Manufacturing Establishments (year 2012)

State of 

Michigan
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geographical regions.  The case study has demonstrated methodological efficacy, as we are able 

to identify the performance of different manufacturing sectors in terms of the amount of energy 

used and lost in various energy-consuming systems, and CO2 emission of individual state and thus 

county in the U.S.  The study has been also applied to the state of Michigan and its counties, which 

has provided a better insight for the possible improvement directions.   
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

 In this chapter, the dissertation objectives and the contributions are summarized in the first 

section.  Recommendations for the possible extension of this research and future work is discussed 

in the second part. 

7.1 Conclusions 

 Improvement of energy efficiency in process systems has been always a key concern in the 

chemical process industry.  However, the recovery of mechanical energy, as compared to thermal 

energy recovery, has not received sufficient attention.  This renders a research need on work 

integration through designing WEN for chemical plants.   

 This research has focused on the recovery of mechanical energy using work exchangers 

that were introduced by Cheng et al. (1967).  A general review of the current research progress is 

provided, together with a basic thermodynamic analysis on work exchange, the challenges and 

opportunities.  This facilitates the introduction of a mathematical modeling and analysis method 

which aims at predicting the maximum amount of mechanical energy that can be feasibly 

recovered using work exchangers.   

 The thermodynamic modeling and analysis method is a general tool to predict the 

maximum amount of mechanical energy recoverable by a WEN prior to network synthesis for any 

design problem.  The methodology referred to as prediction stage can be easily modified based on 

the operation condition, phase, and also when combined with a heat or mass exchange network.  

The modification does not change the structure of the methodology and only the shaft work 

formulation will differ.   

 Using the mathematical framework provided in the prediction stage, the work exchange 

network synthesis can be completed by the set of matrices and vectors which identify the 

placement of work exchangers, utility compressors and expanders if needed.  Similar to the 
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prediction stage, the formulation is general and can be extended to different operating conditions, 

assumptions, and energy calculations.  Note that the temperature will change through the 

pressurization and depressurization processes when dealing with gas phase streams.  Through the 

process of compression, temperature increases, which means that heat will be added to the system, 

and temperature decreases through the expansion, which means that heat will be consumed.  In 

addition, the energy required for compression decreases while the stream that goes through 

pressurization has a lower temperature, and the energy provided through expansion increases while 

the stream has a higher temperature.  Therefore, due to the pressure and temperature correlation in 

pressurization and depressurization, heat integration would play a key role in cases under non-

isothermal conditions.  In fact, heat integration would be required for these cases not only for 

thermal energy recovery but also for improving the amount of mechanical energy that can be 

recovered.  In Chapter 4, the integration of a heat exchanger network (HEN) into the work 

exchanger network synthesis is discussed and it has been shown that the location of the HEN will 

impact the amount of thermal and mechanical energy recovery.  In the presented framework, the 

final location of the HEN is assigned based on the lowest operating cost which reflects the design 

with lower utility consumption.  The methodological efficacy is illustrated by case studies, where 

both mechanical and thermal energy efficiencies as well as an economic feasibility analysis are 

provided.   

 In this study, a direct work exchanger has been considered as the mechanical energy 

recovery device for the development of work exchange network synthesis.  This unit was 

introduced for reverse osmosis processes and has been used in the desalination industry due to its 

distinctive performance.  However, the device has not been considered for mechanical energy 

recovery in other industries such as the chemical and petrochemical industries.  Different 
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characteristics of the chemical processes require investigation into the operational flexibility of the 

unit, and challenges related to the unit safety.  In Chapters 2-4, we discussed the piston-type direct 

work exchanger’s fundamentals, and introduced a thermodynamic analysis approach to design a 

work exchange network synthesis using the direct work exchangers in chemical processes.  While 

the feasibility of using these units has been shown by significant improvements in mechanical 

energy recovery of process systems, how these units can be implemented in real industrial 

processes is still under investigation.  Due to lack of computational and experimental studies on 

piston-type direct work exchangers operated by gas phase streams, we have conducted research on 

modeling of the unit using simulation software.  The customized model has been generated by 

Aspen Plus simulation software which helps us to add the work exchanger to the Aspen Plus unit 

operations library and be able to simulate the synthesized work exchange network using direct 

work exchangers, compressors, and expanders.  This will ensure the design feasibility and 

optimum operating conditions.  The model formulation can be easily modified in the future as the 

piston-type work exchanger develops.  Computational Fluid Dynamics (CFD) modeling has been 

studied for better understating of the operational behavior of the unit.  We have been able to plot 

the four operation stages of pressurization and depressurization in terms of piston motion, high-

pressure and low-pressure streams pressure profiles, and valve positions.  In addition, the 

performance of a unit under various operating conditions such as pressure and temperature is 

investigated.  This is a significant accomplishment towards modification of the piston-type work 

exchangers dealing with gas phase streams.   

 Energy efficiency in manufacturing systems becomes increasingly critical in energy 

sustainability due to a trend toward the depletion of non-renewable resources and the challenges 

owing to carbon dioxide (CO2) emission.  For better evaluation of energy consumption in 



www.manaraa.com

167 

 

manufacturing industries, various energy consumption-related databases have been created by a 

number of research studies and government agencies.  However, a general methodology to study 

the energy efficiency of manufacturing sectors in various geographical scales is not available.  In 

Chapter 6, we proposed a general data-driven methodology for energy efficiency and CO2 

emission analysis of manufacturing sectors in different geographical scopes.  The analysis method 

can be used as a baseline to identify the performance of different manufacturing sectors in terms 

of the amount of energy that will be used or lost for various systems, and the combustion emission 

of each state across the U.S. and its counties.  The study has been also applied to the state of 

Michigan as a case study and its counties to have a better insight on improvement directions and 

to support the future of the energy advancement in industries.  Future analysis will look to further 

combine the methodology with decision making modules for energy efficiency improvement in 

different geographical areas.   

7.2 Future Work 

 The dissertation establishes a solid knowledge foundation for the research related to 

mechanical energy recovery through a work exchange network synthesis approach.  This section 

discusses the possible extension of this research for future development.   

 Optimization-based heat integrated work exchange network synthesis.  The superstructure-

based framework has been considered in heat exchanger network synthesis by the chemical 

industries to find the local optimum design and for more complicated problems.  A superstructure-

based simultaneous heat and work exchange network has been also studied using SSTC 

compressors and turbines counted as the indirect work exchangers.  This framework can be also 

extended for designs in which direct work exchangers are implemented.  The direct work 

exchangers show a unique performance for mechanical energy recovery, and their feasibility for 
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work exchange network design has been demonstrated by the thermodynamic modeling approach.  

Even though the energy targeting methodology and sequential flowsheet development generate a 

WEN with the maximum energy recovery, the optimality of the design is not guaranteed.  Thus, 

development of superstructure methods to solve the heat and work exchange network synthesis 

problems simultaneously and to find the optimum design is suggested.  The objective function can 

be taken as a minimization of the total annualized cost.  In the following, the initial mathematical 

formulation of a MINLP model regarding WEN synthesis is shown.  However, comprehensive 

study is still required to complete the mathematical formulation.   

Decision variables can be stated as: 

 Pi,k, Pj,k = pressure of each HP and LP stream after each match 

 Wijk= workload of each work exchanger between HP and LP streams at stage k 

 WHPu,j= workload of HP external utility 

 WLPu, i = workload of LP external utility 

 
1 if there is a work exchange r between stream i and j in stage k

0 if there is not a work exchanger between stream i and j in stage k
ijkz


 


 

 
,

1 if there is a HP utility for stream j

0 if there is not a HP utility for stream j
Hu jz


 


 

 
,

1 if there isa LP utility  for stream i

0 if there is not a LP utility for stream i
Lu iz


 


 

 The objective function can be written as: 

 Minimize 
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   


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
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11

1 1 11

1 1 1 1

 (7.1) 

Subject to: 

 )W(fS ijij 1  (7.2) 

  jkikjiij P,P,V,VfW 2  (7.3) 

 )W(fS i,LPuLPu,i 3  (7.4) 

 )P,P,P,V(fW t

i

s

iikii,LPu 4  (7.5) 

 )W(fS j,HPuHPu,j 5  (7.6) 

 )P,P,P,V(fW t

j

s

jjkjj,HPu 6  (7.7) 

where 

 I: number of HP process streams 

 J: number of LP process streams 

 K: index for stage, and pressure location 

 LPu: low-pressure utility 

 HPu: high-pressure utility 

 Ps, Pt: source and target pressure 

 ∆Pmin: minimum approach pressure difference 

 Vi, Vj: volumetric flowrates 

 CLu: per unit cost of LP utility 

 Chu: per unit cost of HP utility 
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 CFij, CFi, LPu, CFj, HPu: fixed charges for exchangers 

 Cij, Ci, LPu, Cj, HPu: cost coefficient 

 Sij, Si, LPu, Sj, HPu: size factors of exchangers 

 The feasibility constraints, work balance at each stage, should be added later to complete 

the mathematical formulation to solve the problem using appropriate optimization software.  It is 

suggested that the optimization be completed under isothermal conditions first to investigate the 

work exchanger formulation feasibility, and then the non-isothermal conditions should be 

considered for development of the heat integrated WEN synthesis superstructure.  In addition, 

phase behavior correlation of each high-pressure and low-pressure stream should be considered.   

 Development of appropriate user interface for work exchange network synthesis.  In 

Chapters 3 and 4, a mathematical formulation was presented which will predict the maximum 

amount of mechanical energy that can be recovered and will provide the information regarding the 

placement of work exchangers, external compressors, and external expanders through a set of 

matrices and vectors.  The formulation for the prediction stage has been developed in MATLAB 

which will help users to easily calculate the amount of energy that can be recovered for a case 

study of any size.  However, it is recommended to develop a graphical user interface for the coded 

methodology using the appropriate compiler.  This will help users, especially industry, to 

investigate work exchange network synthesis in processes in which mechanical energy is being 

wasted and quickly define the feasibility and profitability of the technology.   

 CFD modeling verification by experiment.  In Chapter 5, a preliminary investigation into 

the operational behavior of piston-type work exchangers operated by gas phase streams was 

presented.  However, there are still different unit configurations that should be studied.  The main 

areas that the modeling should be extended can be summarized as: possible phase change through 
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the pressurization and depressurization of working fluids, dealing with different fluid domains at 

each side of the piston, and non-reversible behavior of the compression and expansion due to 

friction loss between the piston ring and the cylinder wall which will impact the shaft work 

formulation.  Working alongside IC engine experts will help to integrate the modeling for possible 

manufacturing of the unit at the laboratory and pilot scale.  This will help to address challenges 

related to energy recovery of the device from the unit-based to network-based scale and will be a 

beginning for commercializing the piston-type work exchangers operated by gas phase streams in 

the chemical and petrochemical industry.  

 Minimum pressure difference optimization.  After conducting the CFD modeling, we found 

that how the pressure difference between two sides of the piston will impact the piston speed of 

movement and the operational cycle.  Previously, Cheng et al. (1967) analyzed the flow work 

exchanger performance for reverse osmosis and concluded that the minimum pressure difference 

for the piston motion should between 35 kPa to 70 kPa.  This range could be significantly different 

while dealing with different processes, working fluids with various compression ratios, and also 

with the size and the materials used to manufacture the unit component parts.  Thus, the minimum 

pressure difference should be studied and optimized later using the results from the modeling and 

pilot study validation.   
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APPENDICES 

Appendix A 

 Appendix A contains the step-by-step derivation of matrices Γ  and P  using the flowchart 

shown in Fig. 3.1 and Eqs. 3.3-3.7 for a case study from the Huang and Fan (1996) work. 

Table A-1. Streams data for a case study from Huang and Fan (1996) 

Stream No. Ps (MPa) Pt (MPa) V (m3/s) 

H1 5.72 2.21 0.099 

H2 3.10 0.26 0.076 

L1 1.72 3.10 0.083 

L2 0.10 2.21 0.050 

L3 0.51 5.72 0.073 

 For this case study with two high-pressure streams and three low-pressure streams:

 2HN ; 3LN  

Construct matrix Γ  

  In this case study Γ is a  32  matrix and 
minP  is assumed to be 0.07 MPa. Each element 

of Γ  is constructed using the flowchart shown in Figure 2.  

 














322212

312111

L,HL,HL,H

L,HL,HL,H

ΓΓΓ

ΓΓΓ
Γ  (A-1) 

For  b

L,H

a

L,HL,H
1111

11
Γ,ΓΓ  :  

Calculation of
a

L,H 11
Γ   

 070
11

. t

H

s

L PP   (A-2) 

 070212721 ...   => Yes (A-3) 

and 

 
t

L

t

H

s

L PPP
111

070  .  (A-4) 
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 103070212721 ....   => Yes (A-5) 

Then, 

 
MPa282

070
111

.

.,



 t

H

a

LH PΓ
 (A-6) 

Calculation of 
b

L,H 11
Γ  

 070
11

. t

L

s

H PP  (A-7) 

where 

 070103725 ...   => NO (A-8) 

Then, 

 
MPa103

1

.

 t

L

b

L,H PΓ
11

 (A-9) 

Then, 

  103282 .,.
11 L,HΓ  (A-10) 

For  b

LH

a

LHLH ΓΓΓ
1212

12 ,,, , : 

Calculation of 
a

LHΓ 12 ,   

 070
21
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H

s

L PP   (A-11) 

 070260721 ...   => No (A-12) 
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where 

 070103103 ...   => Yes (A-15) 

and 

 
t

L

s

H

s

L PPP
121

070  .  (A-16) 

 103070103721 ....   => Yes (A-17) 

Then, 

 
MPa033
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
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b

LH PΓ
 (A-18) 

Then, 

  033721
12

.,., LHΓ  (A-19) 

 For  b

LH

a

LHLH ΓΓΓ
2121
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Calculation of 
a

LHΓ 21 ,   
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12
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H

s
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t

L
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 0
21
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where 

 070212725 ...   => No (A-26) 

Then, 

 0
21
b

LHΓ ,    (A-27) 

and 

  00
21

,, LHΓ  (A-28) 

Going through the same procedure, matrix Γ will be constructed.  

 
     
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
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Construct matrix P  
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Going through the same procedure, matrix P will be constructed.  
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Appendix B 

 Appendix B contains the MATLAB code written for calculation of the prediction 

methodology discussed in Chapter 3.  As a sample, the code for calculating maximum energy 

recovery using the prediction methodology is shown for case 2 from Chapter 4 (Table 4.5).  

function [Result,WR,WR2,Whpu,Wlpu,Pa,Pb,dM,WM,Wm,dQ,WQ,WG]= 

casestudy41(I,J,WHTOTAL,WLTOTAL,Phs,Pht,Pls,Plt,dpmin,rs,etta,ml,mh,Ths,Tht,T

ls,Tlt) 
I=3; 
J=2; 
%WHTOTAL=2771.1; 
%WLTOTAL=3406.1; 
Phs=[900;850;700]; 
Ths=[350;350;400]; 
Pht=[100;150;200]; 
Tht=[350;350;400]; 
Pls=[100;100]; 
Tls=[390;420]; 
Plt=[700;900]; 
Tlt=[390;420]; 
dpmin=70; 
rs=1.4; 
etta=1; 
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ml=[25.78;36.81]; 
mh=[36.81;14.73;21.48]; 
%Rh=[0.347662;0.337287;0.248735]; 
%Rl=[0.641965;0.630812]; 
%Cph=[1.432;0.982;1.046]; 
%Cpl=[1.432;1.432]; 
dQ=zeros((I*(I-1)/2),J); 
WG = zeros(1, I); 
Wexp= zeros(1, I); 
Wcomp= zeros(1, I); 
N=zeros(1,(I*(I-1)/2)); 
N1=zeros(1,(I*(I-1)/2)); 
N2=zeros(1,(I*(I-1)/2)); 
%M matrix represent the italic p matrix 
%Q matrix represent the italic O matrix 
%G matrix represent the italic wo matrix 
%Wleft matrix represent the italic WL matrix 
for j=1:J 
    for i=1:I 
        if Phs(i)>=Plt(j)+dpmin 
            Pa(i,j)=Plt(j) 
        elseif Pls(j)<Phs(i)-dpmin & Phs(i)-dpmin<Plt(j) 
            Pa(i,j)=Phs(i)-dpmin 
        else 
            Pa(i,j)=0 
        end 
        if Pls(j)>=Pht(i)+dpmin 
            Pb(i,j)=Pls(j) 
        elseif Pls(j)<Pht(i)+dpmin & Pht(i)+dpmin<Plt(j) 
            Pb(i,j)=Pht(i)+dpmin 
        else 
            Pb(i,j)=0 
        end 
        if Pa(i,j)==0 
            Pb(i,j)=0 
        elseif Pb(i,j)==0 
            Pa(i,j)=0 
        else 
        end 
%alpha(j)=Rl(j)/Cpl(j); 
%Betta(i)=Rh(i)/Cph(i); 
dM(i,j)=[(((Pa(i,j)/Pb(i,j))^((rs-1)/rs))-1)*(1+(Pb(i,j)/Pls(j))^((rs-1)/rs)-

1)] 
Vl(j)=ml(j)*Tls(j) 

  
Vh(i)=mh(i)*Ths(i) 
    end 
end 
WM=dM*diag(Vl)*etta; 
d=ones(J,1) 
Wm=WM*d 
for i=1:I 
    Wh(i)=Vh(i)*(1-(Pht(i)/Phs(i))^((rs-1)/rs)) 
    Wt(i)=Wh(i)-Wm(i) 
end 
for j=1:J 
    n=1 



www.manaraa.com

179 

 

    for i=1:I 
        for k=i+1:I 
            if (Pb(i,j)==0 & Pa(i,j)==0) 
                        N(1,n)=0 
                        N1(1,n)=min(Vh(i),Vh(k)) 
            elseif (Pb(k,j)==0 & Pa(k,j)==0) 
                        N(1,n)=0 
                        N1(1,n)=min(Vh(i),Vh(k)) 
            else 
            

N(1,n)=((max(intersect(Pb(i,j):0.01:Pa(i,j),Pb((k),j):0.01:Pa((k),j)))/min(in

tersect(Pb(i,j):0.01:Pa(i,j),Pb((k),j):0.01:Pa((k),j))))^((rs-1)/rs))-1 
            N1(1,n)=min(Vh(i),Vh(k)) 
            

N2(1,n)=ml(j)*Tls(j)*(etta)*(1+(min(intersect(Pb(i,j):0.01:Pa(i,j),Pb((k),j):

0.01:Pa((k),j)))/Pls(j))^((rs-1)/rs)-1) 
            end 
            n=n+1; 

             
        end 
    end 
    for s=1:n-1 
        dQ(s,j)=N(1,s) 
        E(s,j)=N1(1,s) 
       VV(s,j)=N2(1,s) 
    end 
end 
WQ=dQ.*VV 
for j=1:J 
    for s=1:(I*(I-1))/2 
        if s+1>(I*(I-1))/2 
            break 
        elseif WQ(s,j)==WQ(s+1,j) 
            WQ(s+1,j)=0 
        else 
        end 
    end 
end 
for s=1:(I*(I-1))/2 
    for j=1:J 
        for i=1:I 
            if E(s,j)==Vh(i) 
                WG(i)= WG(i)+ WQ(s,j) 
            else 
                WG(i)=WG(i)+0 
            end 

             
        end 
    end 
end 
for j=1:J 
        for i=1:I 
            WF(i)=Wt(i)+WG(i) 

          
            WL(j)=Vl(j)*((Plt(j)/Pls(j))^((rs-1)/rs)-1) 
            d1=ones(1,I); 
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            d2=ones(1,(I*(I-1)/2)); 
           % Wq=d2*WQ; 
           % Wmm=d1*WM; 
          %  Wleft(j)=Wq(j)-WL(j)-Wmm(j) 
            if WF(i)>=0 
                Wexp(i)=WF(i) 
            else 
                Wexp(i)=0 
            end 
            if WF(i)<=0 
                Wcomp(i)=WF(i); 
            else 
                Wcomp(i)=0 
            end 
        end 
end 
d3=ones(I,1); 
d4=ones(J,1); 
d5=ones(1,I); 
Wlpu=Wexp*d3 
wleft=WL*d4-(d5*Wm-WG*d3) 
Whpu=abs(Wcomp*d3)+abs(wleft) 
WR=WL*d4-Whpu 
WR2=Wh*d3-Wlpu 
WHTOTAL=Wh*d3 
WLTOTAL=WL*d4 
Result=[WHTOTAL;WLTOTAL;WR;WR2;Whpu;Wlpu] 
end 

Appendix C 

 Appendix C includes the customized code listing-subroutine for the direct work exchanger 

modeled in Aspen Plus.  Note that only the parts that are highlighted in red have been modified 

using the code provided by Aspen Plus for USER 2 unit operation (Aspen Tech, Getting Started 

Customizing Unit Operation Models, 2013). 

 The code is listed and edited as follows. 

C 
C     User2 Unit Operation Model Subroutine for Excel Models 
C 
C     This routine is used by default to communicate with User-Written 
C     Excel Unit Operation models.  The feed streams, and user-defined 
C     real and integer parameters are automatically copied to Excel.   
C     The workbook calculations are invoked and the Aspen Plus  
C     simulation is updated with the product streams, and user-defined 
C     real and integer parameters that were calculated by the Excel 
C     Workbook. 
 
      SUBROUTINE WE2 (NMATI,  MSIN,   NINFI,   SINFI,  NMATO, 
     2                   SOUT,   NINFO,  SINFO,   IDSMI,  IDSII, 
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     3                   IDSMO,  IDSIO,  NTOT,    NSUBS,  IDXSUB, 
     4                   ITYPE,  NINT,   INTV,    NREAL,  REALV, 
     5                   IDS,    NPO,    NBOPST,  NIWORK, IWORK, 
     6                   NWORK,  WORK,   NSIZE,   ESIZE,  INTSIZ, 
     7                   LD   ) 
C 
      IMPLICIT NONE 
C 
C     DECLARE VARIABLES USED IN DIMENSIONING 
C 
      INTEGER NMATI, NINFI, NMATO, NINFO, NTOT, 
     +        NSUBS, NINT,  NPO,   NIWORK,NWORK, 
     +        NSIZE 
C 
C     DECLARE ARGUMENTS 
C 
      INTEGER IDSMI(2,NMATI), IDSII(2,NINFI), IDSMO(2,NMATO), 
     +        IDSIO(2,NINFO), IDXSUB(NSUBS),  ITYPE(NSUBS), 
     +        INTV(NINT),      IDS(2,3),       NBOPST(6,NPO), 
     +        IWORK(NIWORK),  INTSIZ(NSIZE),  NREAL, LD 
      
      REAL*8  MSIN(NTOT,NMATI), SINFI(NINFI), SOUT(NTOT,NMATO), 
     +        SINFO(NINFO),     WORK(NWORK),  ESIZE(NSIZE),  
     +        REALV(NREAL) 
C 
C-------------------- Aspen Plus Common Definitions ------------------- 
C 
#include "dms_errout.cmn" 
#include "ppexec_user.cmn" 
#include "dms_ncomp.cmn" 
#include "dms_plex.cmn" 
      REAL*8 B(1) 
      EQUIVALENCE (B(1),IB(1)) 
C 
C-------- Declare Aspen Plus utility functions that will be used ------ 
C 
      INTEGER DMS_IRRCHK, DMS_IFCMNC 
C 
C--------------------- Local Variable Declarations -------------------- 
C 
      INTEGER OFFSET,     NUM_COLS,   NUM_ROWS,   RETCODE,   LID, 
     +        IBLANK(2),  KREAL(3),   KINT(3),    KINPUT(2), KOUTPUT(2), 
     +        LDATA,      I,J,K,      LEN,        KDIAG,     IDX(10),     
     +        LIDSC,      NCD,        C_OFF,      ERRNUMBER, NUM_LINES, 
     +        SOURCE(16), HOL_STRLEN, SOR_LENGTH, SSID(2),   IPROG(2), 
     +        DESC_LENGTH,KOUTSOL(3), EXCEL_NAME_LEN,          
     +        EXCEL_NAME(64),         KINPSOL(3),  
     +        DESCRIPTION(128)           
      INTEGER LABELS(2,9), ROWNAMES(2,NCOMP_NCC+9) !Moved LABELS and ROWNAMES 
declarations. 
      INTEGER REALROWS(2,NTOT+1) 
      CHARACTER*8 RealLabels(2) !Realparam row ID’s. 
 
      REAL*8  INSTREAM(NTOT*NMATI),OUTSTREAM(NTOT*NMATO) 
 
C 
C--------------------------- Data Section ----------------------------- 
C 
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      DATA KINPUT      /4HINPU, 4HT   / 
      DATA KOUTPUT     /4HOUTP, 4HUT  / 
      DATA KREAL       /4HREAL, 4HPARA, 4HMS  / 
      DATA KINT        /4HINTP, 4HARAM, 4HS   / 
      DATA KINPSOL     /4HINP_, 4H    , 4H    / 
      DATA KOUTSOL     /4HOUT_, 4H    , 4H    / 
      DATA IPROG       /4HUSRX, 4HLS  / 
      DATA IBLANK      /4HIMIS, 4HS   / 
 
      DATA LABELS      /4HTOTF, 4HLOW , 
     2                  4HTEMP, 4H    , 
     3                  4HPRES, 4H    , 
     4                  4HENTH, 4HALPY, 
     5                  4HVAP , 4HFRAC, 
     6                  4HLIQ , 4HFRAC, 
     7                  4HENTR, 4HOPY , 
     8                  4HDENS, 4HITY , 
     9                  4HMOLE, 4H WT / 
      DATA RealLabels  /'R' ,     
     +                  'W'          / ! Labels for Realparam table 
 
C---------------------------------------------------------------------- 
C- Establish Excel link and call StartIteration Workbook Hook Function 
C 
      CALL USRUTL_GETEXCEL(EXCEL_NAME, EXCEL_NAME_LEN) 
 CALL StartIteration(RETCODE, EXCEL_NAME,64, IDS(1,1), 8) 
 IF(RETCODE .NE. 0) GOTO 1000 
 
C--------------- Build Aspen_Input Data Table ------------------------- 
C 
C     The Excel Aspen_Input Sheet serves as the Aspen Plus interface for 
C     the material feeds having liquid and vapor components. 
C 
C     The component flow rates and stream variables will be entered into 
C     column 1 as the Excel row identifier.  A separate column will be  
C     entered for each material feed stream.  The number of rows equals 
C     the number of components plus the number of stream properties (9). 
C 
C       Place the 8 character component name (2 integer words) for all  
C       conventional components (NCOMP_NCC) into the first column of  
C       the Excel table (ROWNAMES).  The Aspen Plus function,  
C       DMS_IFCMNC, returns the start of the component id storage  
C       location. 
        
          OFFSET = DMS_IFCMNC('IDSCC') 
          DO J=1, NCOMP_NCC 
            I = OFFSET + 2*(J-1) + 1 
            ROWNAMES(1,J) = IB(I) 
            ROWNAMES(2,J) = IB(I+1) 
          END DO 
 
C       Copy the Aspen Plus stream vector property names into the table. 
C       There are 9 standard stream properties in a material vector. 
C 
          DO K=1, 9 
            J = K + NCOMP_NCC 
            ROWNAMES(1,J) = LABELS(1,K) 
       ROWNAMES(2,J) = LABELS(2,K) 
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          END DO 
          NUM_ROWS = NCOMP_NCC+9 
C 
C       Copy the material feed variables into the table.  Data for  
C       each material stream will be placed in separate columns.   
C       NMATI equals the number of material feeds. 
 
          NUM_COLS = NMATI 
          DO J=1, NUM_COLS 
            OFFSET  = (J-1)*(NCOMP_NCC+9) 
            DO I=1, NUM_ROWS 
              INSTREAM(OFFSET+I) = MSIN(I,J) 
            END DO 
          END DO 
 
C--------------- Send Aspen_Input table to Excel ---------------------- 
   
      LDATA = 8*NUM_ROWS*NUM_COLS 
      CALL WriteTable(RETCODE , KINPUT, 8       , NUM_ROWS, 
     +                ROWNAMES, 8     , NUM_COLS, IDSMI   , 
     +                8       , 2     , INSTREAM, LDATA   ) 
      IF (RETCODE .NE. 0) GO TO 1000 
 
C 
C------------ Send Aspen_IntParams table to Excel --------------------- 
C 
C     The Aspen_IntParams Excel sheet serves as the interface for the 
C     User2 model integer parameters.   
C 
      LDATA = 8*NINT 
      CALL WriteTable(RETCODE, KINT, 12 , NINT  , 
     +                IBLANK , 0   , 1  , IBLANK, 
     +                0      , 1   , INTV,LDATA )  
      IF (RETCODE .NE. 0) GO TO 1000 
 
C 
C-------------- Send Aspen_RealParams table to Excel ------------------- 
C 
C     The Aspen_RealParams Excel sheet serves as the interface for the 
C     User2 model real parameters.   
C 
      LDATA = 8*NREAL 
      CALL WriteTable(RETCODE, KREAL, 12  , NREAL , 
     +                IBLANK , 0    , 1   , IBLANK, 
     +                0      , 2    , REALV,LDATA ) 
      IF (RETCODE .NE. 0) GO TO 1000 
 
C       
C-------- Initialize the Aspen_Output Excel table --------------------- 
C 
C     The Aspen_Output Excel sheet serves as the interface for the  
C     product streams having liquid and vapor components.  This  
C     initialization step is optional.  
      NUM_ROWS=NCOMP_NCC+9 
      DO J=1, NMATO 
        OFFSET  = (J-1)*(NCOMP_NCC+9) 
        DO I=1, NUM_ROWS 
          OUTSTREAM(OFFSET+I) = 0.D0 
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        END DO 
      END DO 
  
 NUM_COLS = NMATO 
      LDATA = 8*NUM_ROWS*NUM_COLS 
      CALL WriteTable(RETCODE , KOUTPUT, 8        , NUM_ROWS, 
     +                ROWNAMES, 8      , NUM_COLS , IDSMO   , 
     +                8       , 2      , OUTSTREAM, LDATA   )  
      IF (RETCODE .NE. 0) GO TO 1000 
 
C 
C------------- Solid Substream Section -------------------------------- 
C 
C     When a simulation contains either conventional or nonconventional 
C     solids, another Excel sheet will be created as the interface with 
C     a separate sheet being created for each substream.  The name of  
C     substream will be appended onto the sheet name.  For example, a 
C     sheet called Aspen_INP_CISOLID will be created for the CISOLID 
C     substream.  The component names and stream properties for this 
C     stream will be prepared similarly to Aspen_Input. A separate  
C     column will be used for each feed.  NSUBS will be greater than 1 
C     if any solid substreams exist. 
 
      IF (NSUBS .GT. 1) Then 
 
C       Build the input tale for each solid substream 
        DO K=2,NSUBS 
 
          IF (ITYPE(K) .EQ. 3) THEN 
C           Nonconventional solid 
            LIDSC = DMS_IFCMNC('IDSNCC') 
            NCD = NCOMP_NNCC 
          ELSE 
C           Conventional solid 
            LIDSC = DMS_IFCMNC('IDSCC') 
            NCD = NCOMP_NCC 
          ENDIF 
 
          DO J=1, NCD 
            LID = LIDSC + 2*(J-1) 
            ROWNAMES(1,J) = IB(LID+1) 
            ROWNAMES(2,J) = IB(LID+2) 
          END DO 
C 
C         Place stream property labels in column 1 
          DO J=1, 9 
            I=NCD+J 
            ROWNAMES(1,I) = LABELS(1,J) 
            ROWNAMES(2,I) = LABELS(2,J) 
          END DO 
          NUM_ROWS = NCD+9 
C 
C         Append the substream name onto the end of the input 
C         and output Excel sheet name. 
          CALL SHS_PID(LD, K, SSID) 
          KINPSOL(2) = SSID(1) 
     KINPSOL(3) = SSID(2) 
          KOUTSOL(2) = SSID(1) 
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     KOUTSOL(3) = SSID(2)      
C 
C         Register the stream data 
          NUM_COLS = NMATI 
          DO J=1, NUM_COLS 
            OFFSET  = (J-1)*(NCD+9) 
            DO I=1, NCD+9 
              INSTREAM(OFFSET+I) = MSIN(IDXSUB(K)+I-1,J) 
            END DO 
          END DO 
C 
C         Send interface table to Excel         
          LDATA = 8*NUM_ROWS*NUM_COLS 
          CALL WriteTable(RETCODE , KINPSOL, 12      , NUM_ROWS, 
     +                    ROWNAMES, 8      , NUM_COLS, IDSMI   , 
     +                    8       , 2      , INSTREAM, LDATA   )  
          IF (RETCODE .NE. 0) GO TO 1000 
C 
C         Initialize the Excel output interface for the substream 
          NUM_COLS = NMATO 
  DO J=1, NUM_COLS 
            OFFSET  = (J-1)*(NCD+9) 
            DO I=1, NCD+9 
              OUTSTREAM(OFFSET+I) = 0.D0 
            END DO 
          END DO 
C 
C         Send interface table to Excel 
C 
          NUM_ROWS = NCD+9 
          LDATA = 8*NUM_ROWS*NUM_COLS 
          CALL WriteTable(RETCODE , KOUTSOL, 12       , NUM_ROWS, 
     +                    ROWNAMES, 8      , NUM_COLS , IDSMO   , 
     +                    8       , 2      , OUTSTREAM, LDATA   ) 
          IF (RETCODE .NE. 0) GO TO 1000 
 
        END DO 
       
 End If 
C 
C------------ Invoke Excel Workbook Calculations ---------------------- 
C 
      CALL CalculateData(RETCODE) 
      IF (RETCODE .NE. 0) GOTO 1000 
 
C---------- Obtain model results from Excel interface sheets ---------- 
C 
C   -- Read back integer parameter table since some may represent results 
C 
         LDATA = 8*NINT 
         CALL ReadTable(RETCODE, KINT, 12 ,  NINT , 
     +                  1      , 1   , INTV, LDATA) 
         IF (RETCODE .NE. 0) GOTO 1000 
C 
C   -- Read back real parameter table 
C 
         LDATA = 8*NREAL 
         CALL ReadTable(RETCODE, KREAL, 12  ,  NREAL, 
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     +                  1      , 2    , REALV, LDATA) 
         IF (RETCODE .NE. 0) GOTO 1000 
C 
C   -- Read product stream information from Aspen_Output 
C 
         NUM_ROWS = NCOMP_NCC+3 !Change 9 to 3; One flow rate + tot flow, temp, pres. 
         NUM_COLS = NMATO 
         LDATA = 8*NUM_ROWS*NUM_COLS 
         CALL ReadTable(RETCODE , KOUTPUT, 8        , NUM_ROWS, 
     +                  NUM_COLS, 2      , OUTSTREAM, LDATA   )  
         IF (RETCODE .NE. 0) GOTO 1000 
C 
C   -- Store product stream results in outlet stream vectors 
C 
         DO J = 1, NMATO 
           OFFSET  = (J-1)*(NCOMP_NCC+3) !Change 9 to 3. 
           DO I = 1, NCOMP_NCC+3  !Change 9 to 3 
             SOUT(I, J) = OUTSTREAM(OFFSET+I) 
           END DO 
         END DO 
C---------------------------------------------------------------------- 
C For solid substreams, obtain product info from Excel interface sheets 
C 
         IF (NSUBS .GT. 1) Then  
C 
C          Retrieve data for each substream 
           DO K = 2,NSUBS 
             IF (ITYPE(K) .EQ. 3) THEN 
               NCD = NCOMP_NNCC 
             ELSE 
               NCD = NCOMP_NCC 
             ENDIF 
 
             CALL SHS_PID(LD, K, SSID) 
             KOUTSOL(2) = SSID(1) 
             KOUTSOL(3) = SSID(2) 
C 
C            Read Excel interface product sheet for substream 
             NUM_ROWS = NCD+9 
             NUM_COLS = NMATO 
             LDATA = 8*NUM_ROWS*NUM_COLS 
 
             CALL ReadTable(RETCODE , KOUTSOL, 12       , NUM_ROWS, 
     +                      NUM_COLS, 2      , OUTSTREAM, LDATA   ) 
             IF(RETCODE .NE. 0) GO TO 1000 
C 
C            Store data into outlet stream vector 
             DO J=1, NMATO 
              OFFSET= (J-1)*(NCD+9) 
        DO I=1, NCD+9 
                 SOUT(IDXSUB(K)+I-1, J) = OUTSTREAM(OFFSET+I) 
              END DO 
             END DO 
           END DO 
 
         End If 
C 
C--------------- End of Current Iteration ----------------------------- 
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      CALL EndIteration(RETCODE) 
      RETURN 
 
C------------------------ Error Handling Section ---------------------- 
 1000 CONTINUE 
C 
C  ALL ERRORS COME HERE TO REPORT ERRORS 
C 
C  Call GetLastTableDataErr() 
C 
C  HOL_STRLEN SETS THE PADDING FOR ERROR HANDLING STRING RETURNED 
C  FROM THE EXCEL INTERFACE. 
C 
         HOL_STRLEN = 64 
         DESC_LENGTH= 512 
         SOR_LENGTH = 64 
C 
      CALL GetLastTableDataErr(RETCODE,     ERRNUMBER,  DESCRIPTION, 
     +                         DESC_LENGTH, HOL_STRLEN, SOURCE, 
     +                         SOR_LENGTH) 
C  
C  REGISTER SEVERE SIMULATION ERROR FROM USER2 WITH ENGINE  
C 
          USER_ICONVG = -3 
          IF (DMS_IRRCHK(IPROG, 1, 4, 4, USER_IUMISS,  
     +                   0, 0, 2) .NE. 0) THEN 
C 
C  DETERMINE NUMBER OF LINES OF LENGTH HOL_STRLEN TO PRINT 
C  MAX IS 10 SO WE CAN USE 8 FOR DESCRIPTION OF ERROR. 
C 
            NUM_LINES  = ( (DESC_LENGTH+HOL_STRLEN-1) /HOL_STRLEN) 
            IF (NUM_LINES .GT. 8 ) NUM_LINES = 8 
C 
C  MOVE STRINGS TO ERROUT_IEROUT ARRAY OF STRINGS. WILL BE PRINTED 
C  TO HISTRY FILE BY ERRPRT(). FIRST WRITE "MS Excel" THEN SOURCE 
C  STRING RETURNED BY API AS ERROR HEADING. 
C 
            WRITE(ERROUT_IEROUT(1), 10) 
            WRITE(ERROUT_IEROUT(2), 11)(SOURCE(I), I=1,(SOR_LENGTH+3)/4) 
C 
C  WRITE ERROR MESSAGE RETURNED FROM EXCEL API TO THE HISTORY FILE 
C 
            DO 111 J=1,NUM_LINES 
              C_OFF = (J-1) * HOL_STRLEN/4 
              WRITE(ERROUT_IEROUT(J+2), 11) 
     +             ( DESCRIPTION(I+C_OFF), I=1,(HOL_STRLEN+3)/4 ) 
 111        CONTINUE 
C 
C  PRINT ERROR MESSAGES TO HISTORY FILE USING THE FIRST NUMLINES+2 
C  LINES OF THE ERROUT_IEROUT ARRAY OF STRINGS. 
C 
            CALL DMS_ERRPRT(NUM_LINES+2) 
          ENDIF 
C 
C  END ERROR REPORTING TO HISTORY FILE 
C 
 2000 CONTINUE 
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C 
C  Call EndIteration() 
C 
C  EndIteration IS CALLED EVEN WHEN A SEVERE ERROR OCCURS ABOVE. 
C 
      CALL EndIteration(RETCODE) 
C 
 999  CONTINUE 
       
C 
C     FORMAT STATEMENTS 
C   
 10   FORMAT('      MS EXCEL Interface Reports:') 
 11   FORMAT('      ',16A4) 
  
 END 
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 Sustainable development has become a key concern in industries, largely due to natural 

resource depletion, global competition, and environmental pressure.  Despite the efforts for 

sustainability improvement, still over a half of energy consumption is wasted in manufacturing 

sectors, where the chemical industry is responsible for an energy efficiency lower than it should 

be.  Many attempts have been made to recover the thermal energy using heat integration 

techniques.  Although process work is more expensive than process heat, no efficient solution has 

been studied to recover mechanical energy yet.  In chemical plants, many process streams need to 

be pressurized or depressurized in different operational stages.  Therefore, the energy of these 

streams can be recovered by a new class of exchange, which is called work exchange.   

 From the thermodynamics point of view, in heat integration, temperature is a state variable 

and the temperature difference is the driving force for heat transfer.  In work integration, pressure 

is a state variable.  A system reaches a mechanical equilibrium if at every point within a given 

system there is no change in pressure with time, and there is no movement of material.  Work 

integration through direct work exchangers could contribute significantly to mechanical energy 

recovery through synthesizing work exchange networks (WENs), where work exchangers are 
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operated in a batch mode, while compressors and expanders as utility units are operated in a 

continuous mode; these render WENs a type of sophisticated hybrid network system.   

 This research focuses on a new type of process integration for effective work integration 

through WEN synthesis.  The concept of work integration has been studied and a mathematical 

modeling and analysis method is introduced to predict the maximum amount of mechanical energy 

that can be feasibly recovered using direct work exchangers prior to WEN configuration 

development.  A thermodynamic model-based synthesis approach is developed to design a cost-

effective heat-integrated work exchanger network (HIWEN), in which direct work exchangers 

may work under different operating conditions.  Note that direct work exchangers have been used 

widely for seawater reverse osmosis (RO) desalination, where liquid streams are pressurized or 

depressurized.  This type of unit, however, cannot be directly used for mechanical energy recovery 

involving streams in gas phase in chemical process systems.  Thus, investigation of direct work 

exchangers that can be operated for mechanical energy recovery involving gas streams has been 

performed.  A CFD-based model is developed to conduct various simulations to study the design 

of such a device, and its operational behavior under different operating conditions.  The findings 

from this dissertation can have great potential for improvement of energy efficiency in 

manufacturing sectors.   



www.manaraa.com

199 

 

 AUTOBIOGRAPHICAL STATEMENT 

EDUCATION 

• M.S., Chemical Engineering, Wayne State University, Detroit, MI, 05/2014  

• B.S., Chemical Engineering, University of Tehran, Tehran, Iran, 12/2011 

• Graduate Certificate, Sustainable Engineering, Wayne State University, Detroit, MI, 05/2017 

AWARDS 

• American Institute of Chemical Engineers (AIChE) Sustainable Engineering Forum (SEF) 

Best Student Paper Award, 2018. 

• Frederick G. Weed Graduate Scholarship, Department of Chemical Engineering and Materials 

Science, Wayne State University, 2017. 

• The Best Poster Presentation (Co-Awardee), the 5th International Congress on Sustainability 

Science & Engineering (ICOSSE’16), Suzhou, Jiangsu, China, October 24-27, 2016. 

• The Best Oral Presentation Award, the 4th International Conference on Sustainable Chemical 

Product and Process Engineering (SCPPE’16), Nanjing, China, May 31-June 3, 2016. 

• Outstanding Graduate Teaching Assistant, Department of Chemical Engineering and Materials 

Science, Wayne State University, 2016. 

• U.S. National Science Foundation Student Travel Award, to attend the 4th International 

Conference on Sustainable Chemical Product and Process Engineering, Nanjing, China, May 

31-June 3, 2016. 

• Best Presentation in Session on Energy Sustainability, Challenges and Solutions, AIChE 

Annual National Meeting, Salt Lake City, UT, November 8-13, 2015. 

• Student Presentation Award (1st Place), Graduate Research Symposium, Department of 

Chemical Engineering and Materials Science, Wayne State University, October 30, 2015. 

PROFESSIONAL ACCOMPLISHMENTS 

• President, ChE/MSE Graduate Students Organization, Wayne State University, Detroit, MI, 

2016-2017. 

• Co-Chair, Annual Graduate Research Symposium, Wayne State University, Detroit, MI, 

November 7, 2014. 

PUBLICATIONS  

• Amini-Rankouhi, A. and Y. Huang, “Prediction of Maximum Recoverable Mechanical 

Energy via Work Integration: A Thermodynamic Modeling and Analysis Approach,” AIChE 

Journal, 2017, 63: 4814–4826, 2017.  

• Amini-Rankouhi, A. and Y. Huang, “Mechanical Energy Recovery through Work Exchanger 

Network Integration: Challenges and Opportunities,” accepted. Proceedings of the 13th 

International Symposium on Process Systems Engineering – PSE 2018. 

• Amini-Rankouhi, A., Smith, S., Akgun, H., and Y. Huang, “Data-driven Modeling and 

Analysis of Energy Efficiency of Geographically Distributed Manufacturing,” submitted, 

Smart and Sustainable Manufacturing Systems, 2018.  

• Amini-Rankouhi, A. and Y. Huang, “Synthesis of Cost Effective Heat Integrated Work 

Exchange Network,” to be submitted, AIChE Journal, 2018.  


	Wayne State University
	1-1-2018
	Maximum Recovery Of Mechanical Energy Through Work Integration: A Work Exchange Network Synthesis Approach
	Aida Amini Rankouhi
	Recommended Citation


	tmp.1544546168.pdf.HwqAa

